Multi-sensor data fusion between radio tomographic imaging and noise radar

被引:3
|
作者
Vergara, Christopher [1 ]
Martin, Richard K. [2 ]
Collins, Peter J. [2 ]
Lievsay, James R. [2 ]
机构
[1] Australian Def Force, Royal Australian Air Force, Canberra, ACT, Australia
[2] Air Force Inst Technol, Dept Elect & Comp Engn, Wright Patterson AFB, OH USA
来源
IET RADAR SONAR AND NAVIGATION | 2020年 / 14卷 / 02期
关键词
sensor fusion; surveillance; radar imaging; image resolution; noise radar communities; multisensor data fusion; radio tomographic imaging; Tikhonov regularisation; target centroid location; target pixel dispersion; ideal solution comparison; disparate sensor technologies; TRACKING;
D O I
10.1049/iet-rsn.2019.0092
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Radio tomographic imaging and noise radar are two proven surveillance technologies. The novelty of fusing data from radio tomographic imaging and noise radar is achieved with the derivation of a fusion technique utilising Tikhonov regularisation. Analysing the results of the Tikhonov influenced techniques reveals an average 43-47% error decrease in target centroid location, a 13-19% size decreases in target pixel dispersion and a 6-41% improvement in an ideal solution comparison. Results provide the radio tomographic imaging and noise radar communities a proof of concept for the fusion of data from two disparate sensor technologies.
引用
收藏
页码:187 / 193
页数:7
相关论文
共 50 条
  • [1] Heterogeneous Multi-sensor Data Fusion in Radar Signal Processing
    Liu, Qiyue
    Zhang, Qi
    2019 4TH INTERNATIONAL CONFERENCE ON ELECTROMECHANICAL CONTROL TECHNOLOGY AND TRANSPORTATION (ICECTT 2019), 2019, : 134 - 137
  • [2] Multi-sensor Adaptive Data Fusion with Colored Measurement Noise
    Wu, Yao
    Cai, Meng
    Li, Jianxun
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 6102 - 6107
  • [3] Intelligent Neural Computing-Based Way for Multi-Sensor Imaging Radar Data Fusion
    Shkvarko, Yuriy V.
    Lopez, Josue A.
    Santos, Stewart R.
    Garcia-Torales, Guillermo
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 757 - 762
  • [4] Data fusion algorithm for radar countermeasures and reconnaissance based on multi-sensor
    Liu, Kang
    He, Minghao
    Han, Jun
    Feng, Mingyue
    Du, Xinglin
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2023, 45 (01): : 101 - 107
  • [5] Multi-Sensor Data Fusion in Cognitive Radio from its Perspective
    Sinha, Nishant
    Deka, Nabajit
    Dhar, Sourav
    Bera, R.
    Kandar, Debdatta
    2012 INTERNATIONAL CONFERENCE ON RADAR, COMMUNICATION AND COMPUTING (ICRCC), 2012, : 24 - 28
  • [6] An introduction to multi-sensor data fusion
    Llinas, J
    Hall, DL
    ISCAS '98 - PROCEEDINGS OF THE 1998 INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-6, 1998, : E537 - E540
  • [7] Multi-Sensor Measurement and Data Fusion
    Liu, Zheng
    Xiao, George
    Liu, Huan
    Wei, Hanbing
    IEEE INSTRUMENTATION & MEASUREMENT MAGAZINE, 2022, 25 (01) : 28 - 36
  • [8] An estimator for multi-sensor data fusion
    Thejaswi, C.
    Ganapathy, V.
    Patro, R. K.
    Raina, M.
    Ghosh, S. K.
    2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 2690 - +
  • [9] Qualitative multi-sensor data fusion
    Falomir, Z
    Escrig, AT
    RECENT ADVANCES IN ARTIFICIAL INTELLIGENCE RESEARCH AND DEVELOPMENT, 2004, 113 : 259 - 266
  • [10] Multi-sensor data fusion architecture
    Al-Dhaher, AHG
    Mackesy, D
    3RD IEEE INTERNATIONAL WORKSHOP ON HAPTIC, AUDIO AND VISUAL ENVIRONMENTS AND THEIR APPLICATIONS - HAVE 2004, 2004, : 159 - 163