High-mode Rayleigh-Taylor growth in NIF ignition capsules

被引:171
|
作者
Hammel, B. A. [1 ]
Haan, S. W. [1 ]
Clark, D. S. [1 ]
Edwards, M. J. [1 ]
Langer, S. H. [1 ]
Marinak, M. M. [1 ]
Patel, M. V. [1 ]
Salmonson, J. D. [1 ]
Scott, H. A. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA USA
关键词
Hydrodynamic simulation; Rayleigh-Taylor instabilities; Inertial confinement fusion; Implosions; HOT;
D O I
10.1016/j.hedp.2009.12.005
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An assessment of short wavelength hydrodynamic stability is an essential component in the optimization of NIF ignition target designs. Using highly-resolved massively-parallel 2D Hydra simulations [Marinak, M.M. et al., Physics of Plasmas (1998). 5(4): 11251, we routinely evaluate target designs up to mode numbers of 2000 (lambda similar to 2 mu m) [Hammel, B.A. et al., Journal of Physics: Conference Series, 2008. 112(2): p. 02200]. On the outer ablator surface, mode numbers up to 300 (lambda similar to 20 mu m) can have significant growth in CH capsule designs. At the internal fuel:ablator interface mode numbers up to similar to 2000 are important for both CH and Be designs. In addition, "isolated features" on the capsule, such as the "fill-tube" (similar to 5 mu m scale-length) and defects, can seed short wavelength growth at the ablation front and the fuel:ablator interface, leading to the injection of similar to 10's ng of ablator material into the central hot-spot. We are developing methods to measure high-mode mix on NIF implosion experiments. X-ray spectroscopic methods are appealing since mix into the hot-spot will result in x-ray emission from the high-Z dopant (Cu or Ge) in the ablator material (Be or CH). (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:171 / 178
页数:8
相关论文
共 50 条
  • [31] Density and growth rate measurements in a high Atwood number Rayleigh-Taylor mixing
    Banerjee, Arindam
    Andrews, Malcolm J.
    Proceedings of the ASME Heat Transfer Division 2005, Vol 1, 2005, 376-1 : 295 - 303
  • [32] The effect of microstructure on Rayleigh-Taylor instability growth in solids
    Olson, R. T.
    Cerreta, E. K.
    Morris, C.
    Montoya, A. M.
    Mariam, F. G.
    Saunders, A.
    King, R. S.
    Brown, E. N.
    Gray, G. T.
    Bingert, J. F.
    18TH APS-SCCM AND 24TH AIRAPT, PTS 1-19, 2014, 500
  • [33] Experimental analyses of Rayleigh-Taylor growth in cylindrical implosions
    Beck, JB
    Hsing, WH
    Hoffman, NM
    Choi, CK
    LASER INTERACTION AND RELATED PLASMA PHENOMENA, 1996, (369): : 160 - 165
  • [34] Optimal perturbations for controlling the growth of a Rayleigh-Taylor instability
    Kord, Ali
    Capecelatro, Jesse
    JOURNAL OF FLUID MECHANICS, 2019, 876 : 150 - 185
  • [35] XUV Probing as a Diagnostic of Rayleigh-Taylor Instability Growth
    Gartside, L. M. R.
    Tallents, G. J.
    Pasley, J.
    Gaffney, J.
    Rose, S.
    X-RAY LASERS 2008, PROCEEDINGS, 2009, 130 : 469 - +
  • [36] MODE-COUPLING THEORY IN ABLATIVE RAYLEIGH-TAYLOR INSTABILITY
    HASEGAWA, S
    NISHIHARA, K
    PHYSICS OF PLASMAS, 1995, 2 (12) : 4606 - 4616
  • [37] Growth rate of the turbulent magnetic Rayleigh-Taylor instability
    Briard, Antoine
    Grea, Benoit-Joseph
    Nguyen, Florian
    PHYSICAL REVIEW E, 2022, 106 (06)
  • [38] Rayleigh-Taylor mode-RF coupling in a dusty plasma
    Sambandan, G
    Tripathi, VK
    Sayal, VK
    PHYSICS LETTERS A, 1999, 262 (2-3) : 179 - 185
  • [39] SINGLE-MODE AND MULTIMODE RAYLEIGH-TAYLOR EXPERIMENTS ON NOVA
    REMINGTON, BA
    WEBER, SV
    MARINAK, MM
    HAAN, SW
    KILKENNY, JD
    WALLACE, RJ
    DIMONTE, G
    PHYSICS OF PLASMAS, 1995, 2 (01) : 241 - 255
  • [40] The Influence of Viscosity on the Growth Rate of Rayleigh-Taylor Instability
    Malekpour, A.
    Ghasemizad, A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2022, 46 (03): : 1065 - 1071