High-mode Rayleigh-Taylor growth in NIF ignition capsules

被引:171
|
作者
Hammel, B. A. [1 ]
Haan, S. W. [1 ]
Clark, D. S. [1 ]
Edwards, M. J. [1 ]
Langer, S. H. [1 ]
Marinak, M. M. [1 ]
Patel, M. V. [1 ]
Salmonson, J. D. [1 ]
Scott, H. A. [1 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA USA
关键词
Hydrodynamic simulation; Rayleigh-Taylor instabilities; Inertial confinement fusion; Implosions; HOT;
D O I
10.1016/j.hedp.2009.12.005
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
An assessment of short wavelength hydrodynamic stability is an essential component in the optimization of NIF ignition target designs. Using highly-resolved massively-parallel 2D Hydra simulations [Marinak, M.M. et al., Physics of Plasmas (1998). 5(4): 11251, we routinely evaluate target designs up to mode numbers of 2000 (lambda similar to 2 mu m) [Hammel, B.A. et al., Journal of Physics: Conference Series, 2008. 112(2): p. 02200]. On the outer ablator surface, mode numbers up to 300 (lambda similar to 20 mu m) can have significant growth in CH capsule designs. At the internal fuel:ablator interface mode numbers up to similar to 2000 are important for both CH and Be designs. In addition, "isolated features" on the capsule, such as the "fill-tube" (similar to 5 mu m scale-length) and defects, can seed short wavelength growth at the ablation front and the fuel:ablator interface, leading to the injection of similar to 10's ng of ablator material into the central hot-spot. We are developing methods to measure high-mode mix on NIF implosion experiments. X-ray spectroscopic methods are appealing since mix into the hot-spot will result in x-ray emission from the high-Z dopant (Cu or Ge) in the ablator material (Be or CH). (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:171 / 178
页数:8
相关论文
共 50 条
  • [21] Effect of surface tension and viscosity on bubble growth of single mode Rayleigh-Taylor instability
    Li, Mingjun
    Zhu, Qiaofeng
    Li, Guibo
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2016, 37 (12) : 1607 - 1614
  • [22] Late-time quadratic growth in single-mode Rayleigh-Taylor instability
    Wei, Tie
    Livescu, Daniel
    PHYSICAL REVIEW E, 2012, 86 (04):
  • [23] Rayleigh-Taylor mixing may account for the position anomaly in NIF microdot spectroscopy experiments
    Poujade, O.
    Barrios, M. A.
    Baton, S.
    Blancard, C.
    Devriendt, R.
    Primout, M.
    PHYSICS OF PLASMAS, 2021, 28 (04)
  • [24] Effect of surface tension and viscosity on bubble growth of single mode Rayleigh-Taylor instability
    Mingjun LI
    Qiaofeng ZHU
    Guibo LI
    AppliedMathematicsandMechanics(EnglishEdition), 2016, 37 (12) : 1607 - 1614
  • [25] Combined effect of viscosity and vorticity on single mode Rayleigh-Taylor instability bubble growth
    Banerjee, Rahul
    Mandal, Labakanta
    Roy, S.
    Khan, M.
    Gupta, M. R.
    PHYSICS OF PLASMAS, 2011, 18 (02)
  • [26] Effect of surface tension and viscosity on bubble growth of single mode Rayleigh-Taylor instability
    Mingjun Li
    Qiaofeng Zhu
    Guibo Li
    Applied Mathematics and Mechanics, 2016, 37 : 1607 - 1614
  • [27] Conceptual design of a Rayleigh-Taylor experiment to study bubble merger in two dimensions on NIF
    Malamud, G.
    Grosskopf, M. J.
    Drake, R. P.
    HIGH ENERGY DENSITY PHYSICS, 2014, 11 : 17 - 25
  • [28] NOTE ON RATE OF GROWTH OF DISTURBANCES IN RAYLEIGH-TAYLOR INSTABILITY
    CHANDRA, K
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (06): : A710 - &
  • [29] Compressibility effects on the Rayleigh-Taylor instability growth rates
    Key Laboratory of Fusion and Advanced Electromagnetic Technology, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
    不详
    Chin. Phys. Lett., 2008, 3 (1015-1018):
  • [30] Very-high-growth-factor planar ablative Rayleigh-Taylor experiments
    Bradley, D. K.
    Braun, D. G.
    Glendinning, S. G.
    Edwards, M. J.
    Milovich, J. L.
    Sorce, C. M.
    Collins, G. W.
    Haan, S. W.
    Page, R. H.
    Wallace, R. J.
    Kaae, J. L.
    PHYSICS OF PLASMAS, 2007, 14 (05)