Static impedance behavior of programmable metallization cells

被引:22
|
作者
Rajabi, S. [1 ]
Saremi, M. [1 ]
Barnaby, H. J. [1 ]
Edwards, A. [2 ]
Kozicki, M. N. [1 ]
Mitkova, M. [3 ]
Mahalanabis, D. [1 ]
Gonzalez-Velo, Y. [1 ]
Mahmud, A. [1 ]
机构
[1] Arizona State Univ, Sch Elect Comp & Energy Engn, Tempe, AZ 85287 USA
[2] Air Force Res Lab, Space Vehicles Directorate, Kirtland AFB, NM USA
[3] Boise State Univ, Dept Elect & Comp Engn, Boise, ID 83725 USA
关键词
Chalcogenide; Impedance; Parametric model; Programmable metallization cells; Resistive RAM (ReRAM); Nano-ionic memory; THIN-FILMS; AG;
D O I
10.1016/j.sse.2014.12.019
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Programmable metallization cell (PMC) devices work by growing and dissolving a conducting metallic bridge across a chalcogenide glass (ChG) solid electrolyte, which changes the resistance of the cell. PMC operation relies on the incorporation of metal ions in the ChG films via photo-doping to lower the off-state resistance and stabilize resistive switching, and subsequent transport of these ions by electric fields induced from an externally applied bias. In this paper, the static on- and off-state resistance of a PMC device composed of a layered (Ag-rich/Ag-poor) Ge30Se70 ChG film with active Ag and inert Ni electrodes is characterized and modeled using three dimensional simulation code. Calibrating the model to experimental data enables the extraction of device parameters such as material bandgaps, workfuncdons, density of states, carrier mobilities, dielectric constants, and affinities. Published by Elsevier Ltd.
引用
收藏
页码:27 / 33
页数:7
相关论文
共 50 条
  • [41] Inherent diode isolation in programmable metallization cell resistive memory elements
    Sarath C. Puthentheradam
    Dieter K. Schroder
    Michael N. Kozicki
    Applied Physics A, 2011, 102 : 817 - 826
  • [42] A programmable metallization cell based on Ag-As2S3
    Stratan, I.
    Tsiulyanu, D.
    Eisele, I.
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2006, 8 (06): : 2117 - 2119
  • [43] A CMOS-compatible electronic synapse device based on Cu/SiO2/W programmable metallization cells
    Chen, Wenhao
    Fang, Runchen
    Balaban, Mehmet B.
    Yu, Weijie
    Gonzalez-Velo, Yago
    Barnaby, Hugh J.
    Kozicki, Michael N.
    NANOTECHNOLOGY, 2016, 27 (25)
  • [44] A programmable impedance matching circuit for voiceband modems
    Hershbarger, Russell A.
    Jia, Wenyan
    Tey, Kiarn A.
    Fukahori, Kiyoshi
    Hurst, Paul J.
    Kapoor, Manprit
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2008, 43 (02) : 468 - 476
  • [45] METALLIZATION BEHAVIOR OF LATERITE ORE PELLETS
    GANGULY, A
    INDIAN JOURNAL OF TECHNOLOGY, 1982, 20 (06): : 215 - 217
  • [46] HSPICE Macromodel of a Programmable Metallization Cell (PMC) and its Application to Memory Design
    Junsangsri, Pilin
    Lombardi, Fabrizio
    Han, Jie
    2014 IEEE/ACM INTERNATIONAL SYMPOSIUM ON NANOSCALE ARCHITECTURES (NANOARCH), 2014, : 45 - 50
  • [47] THE IMPACT OF THE METALLIZATION TECHNOLOGY ON JUNCTION BEHAVIOR
    POLIGNANO, ML
    CIRCELLI, N
    JOURNAL OF APPLIED PHYSICS, 1990, 68 (04) : 1869 - 1877
  • [48] Selective metallization of solar cells
    Wrobel, Edyta
    Kowalik, Piotr
    Mazurkiewicz, Janusz
    MICROELECTRONICS INTERNATIONAL, 2015, 32 (01) : 1 - 7
  • [49] Total Ionizing Dose Tolerance of the Resistance Switching of Ag-Ge40S60 based Programmable Metallization Cells
    Dandamudi, P.
    Barnaby, H. J.
    Kozicki, M. N.
    Gonzalez-Velo, Y.
    Holbert, K. E.
    2013 14TH EUROPEAN CONFERENCE ON RADIATION AND ITS EFFECTS ON COMPONENTS AND SYSTEMS (RADECS), 2013,