Automating Blastocyst Formation and Quality Prediction in Time-Lapse Imaging with Adaptive Key Frame Selection

被引:2
|
作者
Chen, Tingting [1 ,2 ]
Cheng, Yi [1 ,2 ]
Wang, Jinhong [1 ,2 ]
Yang, Zhaoxia [3 ]
Zheng, Wenhao [1 ,2 ]
Chen, Danny Z. [4 ]
Wu, Jian [5 ,6 ]
机构
[1] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Real Doctor AI Res Ctr, Hangzhou, Peoples R China
[3] Alibaba Grp, Hangzhou, Peoples R China
[4] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA
[5] Zhejiang Univ, Sch Publ Hlth, Affiliated Hosp 2, Sch Med, Hangzhou 310058, Peoples R China
[6] Zhejiang Univ, Inst Wenzhou, Hangzhou 310058, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Adaptive Key Frame Selection; Morphokinetics parameters; Blastocyst formation prediction; TLM videos; IMPLANTATION; EMBRYOS; SCORE;
D O I
10.1007/978-3-031-16440-8_43
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Effective approaches for accurately predicting the developmental potential of embryos and selecting suitable embryos for blastocyst culture are critically needed. Many deep learning (DL) based methods for time-lapse monitoring (TLM) videos have been proposed to tackle this problem. Although fruitful, these methods are either ineffective when processing long TLM videos, or need extra annotations to determine the morphokinetics parameters of embryos. In this paper, we propose Adaptive Key Frame Selection (AdaKFS), a new framework that adaptively selects informative frames on per-input basis to predict blastocyst formation using TLM videos at the cleavage stage on day 3. For each time step, a policy network decides whether to use or skip the current frame. Further, a prediction network generates prediction using the morphokinetics features of the selected frames. We efficiently train and enhance the frame selection process by using a Gumbel-Softmax sampling approach and a reward function, respectively. Comprehensive experiments on a large TLM video dataset verify the performance superiority of our new method over state-of-the-art methods.
引用
收藏
页码:445 / 455
页数:11
相关论文
共 50 条
  • [1] Predictive factors of good quality blastocyst formation according to time-lapse analysis
    Splingart, C.
    Lammers, J.
    Le Fleuter, N.
    Barriere, P.
    Freour, T.
    HUMAN REPRODUCTION, 2014, 29 : 171 - 171
  • [2] Customized morphokinetic model for blastocyst selection by time-lapse system
    Tejera, A.
    Motato, J.
    Munoz, M.
    Aparicio, B.
    Castello, D.
    Meseguer, M.
    HUMAN REPRODUCTION, 2014, 29 : 158 - 159
  • [3] Morphokinetic analysis and embryonic prediction for blastocyst formation through an integrated time-lapse system
    Motato, Yamileth
    Jose de los Santos, Maria
    Jose Escriba, Maria
    Aparicio Ruiz, Belen
    Remohi, Jose
    Meseguer, Marcos
    FERTILITY AND STERILITY, 2016, 105 (02) : 376 - +
  • [4] Development of deep learning algorithms for predicting blastocyst formation and quality by time-lapse monitoring
    Qiuyue Liao
    Qi Zhang
    Xue Feng
    Haibo Huang
    Haohao Xu
    Baoyuan Tian
    Jihao Liu
    Qihui Yu
    Na Guo
    Qun Liu
    Bo Huang
    Ding Ma
    Jihui Ai
    Shugong Xu
    Kezhen Li
    Communications Biology, 4
  • [5] Development of deep learning algorithms for predicting blastocyst formation and quality by time-lapse monitoring
    Liao, Qiuyue
    Zhang, Qi
    Feng, Xue
    Huang, Haibo
    Xu, Haohao
    Tian, Baoyuan
    Liu, Jihao
    Yu, Qihui
    Guo, Na
    Liu, Qun
    Huang, Bo
    Ma, Ding
    Ai, Jihui
    Xu, Shugong
    Li, Kezhen
    COMMUNICATIONS BIOLOGY, 2021, 4 (01)
  • [6] EARLY PREDICTION OF BLASTOCYST DEVELOPMENT VIA TIME-LAPSE VIDEO ANALYSIS
    Xie, Xiang
    Yan, Pengxiang
    Cheng, Fang-Ying
    Gao, Feng
    Mai, Qingyun
    Li, Guanbin
    2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [7] MALE PARTNER AGE IN RELATION TO TIME TO BLASTOCYST FORMATION: A TIME-LAPSE STUDY
    Arvizu, M.
    Dimitriadis, I.
    Christou, G.
    Tanrikut, C.
    Bormann, C. L.
    Hauser, R.
    Souter, I.
    Chavarro, J. E.
    FERTILITY AND STERILITY, 2017, 108 (03) : E60 - E60
  • [8] Equine non-invasive time-lapse imaging and blastocyst development
    Meyers, S.
    Burruel, V
    Kato, M.
    de la Fuente, A.
    Orellana, D.
    Renaudin, C.
    Dujovne, G.
    REPRODUCTION FERTILITY AND DEVELOPMENT, 2019, 31 (12) : 1874 - 1884
  • [9] Prediction of blastocyst formation based on very early-cleavage embryos parameters by time-lapse monitoring
    De Martin, H.
    Alecsandra, G.
    Fujii, M.
    Conatti, M.
    Nakano, M.
    Bonetti, T.
    Monteleone, P.
    HUMAN REPRODUCTION, 2020, 35 : I239 - I239
  • [10] Clinical validation of an automatic time-lapse algorithm classification system for blastocyst selection
    Aparicio-Ruiz, B.
    Perez, S.
    Romany, L.
    Viloria, T.
    Alegre, L.
    Remohi, J.
    Meseguer, M.
    HUMAN REPRODUCTION, 2019, 34 : 72 - 72