Prediction of blastocyst formation based on very early-cleavage embryos parameters by time-lapse monitoring

被引:0
|
作者
De Martin, H. [1 ,2 ]
Alecsandra, G. [1 ]
Fujii, M. [1 ]
Conatti, M. [1 ]
Nakano, M. [2 ]
Bonetti, T. [3 ,4 ]
Monteleone, P. [2 ,5 ]
机构
[1] Monteleone Human Reprod Ctr, Embriol, Sao Paulo, SP, Brazil
[2] Univ Sao Paulo, Gynecol Discipline, Dept Obstet & Gynecol, Sao Paulo, Brazil
[3] Monteleone Human Reprod Ctr, Dept Sci, Sao Paulo, SP, Brazil
[4] Univ Fed Sao Paulo, Dept Gynecol, Sao Paulo, Brazil
[5] Monteleone Human Reprod Ctr, Sao Paulo, SP, Brazil
关键词
D O I
暂无
中图分类号
R71 [妇产科学];
学科分类号
100211 ;
摘要
P-222
引用
收藏
页码:I239 / I239
页数:1
相关论文
共 50 条
  • [1] The association of early-cleavage embryo morphokinetics and blastocyst formation rate does not vary by women age: a time-lapse monitoring study
    Gomes, A.
    De Martin, H.
    Fujji, M.
    Conatti, M.
    Nakano, M.
    Bonetti, T.
    Monteleone, P.
    [J]. HUMAN REPRODUCTION, 2020, 35 : I254 - I255
  • [2] A predictive model for blastocyst formation based on morphokinetic parameters in time-lapse monitoring of embryo development
    Milewski, Robert
    Kuc, Pawel
    Kuczynska, Agnieszka
    Stankiewicz, Bozena
    Lukaszuk, Krzysztof
    Kuczynski, Waldemar
    [J]. JOURNAL OF ASSISTED REPRODUCTION AND GENETICS, 2015, 32 (04) : 571 - 579
  • [3] A predictive model for blastocyst formation based on morphokinetic parameters in time-lapse monitoring of embryo development
    Robert Milewski
    Paweł Kuć
    Agnieszka Kuczyńska
    Bożena Stankiewicz
    Krzysztof Łukaszuk
    Waldemar Kuczyński
    [J]. Journal of Assisted Reproduction and Genetics, 2015, 32 : 571 - 579
  • [4] EARLY PREDICTION OF BLASTOCYST DEVELOPMENT VIA TIME-LAPSE VIDEO ANALYSIS
    Xie, Xiang
    Yan, Pengxiang
    Cheng, Fang-Ying
    Gao, Feng
    Mai, Qingyun
    Li, Guanbin
    [J]. 2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [5] Comparison of morphokinetic parameters between euploid and aneuploid embryos by time-lapse monitoring
    Bayram, A.
    Ciray, H. N.
    Sahin, O.
    Okutman-Emonts, O.
    Bahceci, M.
    [J]. HUMAN REPRODUCTION, 2012, 27
  • [6] Development of deep learning algorithms for predicting blastocyst formation and quality by time-lapse monitoring
    Qiuyue Liao
    Qi Zhang
    Xue Feng
    Haibo Huang
    Haohao Xu
    Baoyuan Tian
    Jihao Liu
    Qihui Yu
    Na Guo
    Qun Liu
    Bo Huang
    Ding Ma
    Jihui Ai
    Shugong Xu
    Kezhen Li
    [J]. Communications Biology, 4
  • [7] Development of deep learning algorithms for predicting blastocyst formation and quality by time-lapse monitoring
    Liao, Qiuyue
    Zhang, Qi
    Feng, Xue
    Huang, Haibo
    Xu, Haohao
    Tian, Baoyuan
    Liu, Jihao
    Yu, Qihui
    Guo, Na
    Liu, Qun
    Huang, Bo
    Ma, Ding
    Ai, Jihui
    Xu, Shugong
    Li, Kezhen
    [J]. COMMUNICATIONS BIOLOGY, 2021, 4 (01)
  • [8] Morphokinetic analysis and embryonic prediction for blastocyst formation through an integrated time-lapse system
    Motato, Yamileth
    Jose de los Santos, Maria
    Jose Escriba, Maria
    Aparicio Ruiz, Belen
    Remohi, Jose
    Meseguer, Marcos
    [J]. FERTILITY AND STERILITY, 2016, 105 (02) : 376 - +
  • [9] Timing of cleavage divisions determined with time-lapse imaging is linked to blastocyst formation rates and quality of in vitro-produced ovine embryos
    Fryc, Karolina
    Nowak, Agnieszka
    Kij, Barbara
    Kochan, Joanna
    Bartlewski, Pawel M.
    Murawski, Maciej
    [J]. THERIOGENOLOGY, 2021, 159 : 147 - 152
  • [10] Prediction of in-vitro developmental competence of early cleavage-stage mouse embryos with compact time-lapse equipment
    Pribenszky, Csaba
    Losonczi, Eszter
    Molnar, Miklos
    Lang, Zsolt
    Matyas, Szabolcs
    Rajczy, Klara
    Molnar, Katalin
    Kovacs, Peter
    Nagy, Peter
    Conceicao, Jason
    Vajta, Gabor
    [J]. REPRODUCTIVE BIOMEDICINE ONLINE, 2010, 20 (03) : 371 - 379