Automating Blastocyst Formation and Quality Prediction in Time-Lapse Imaging with Adaptive Key Frame Selection

被引:2
|
作者
Chen, Tingting [1 ,2 ]
Cheng, Yi [1 ,2 ]
Wang, Jinhong [1 ,2 ]
Yang, Zhaoxia [3 ]
Zheng, Wenhao [1 ,2 ]
Chen, Danny Z. [4 ]
Wu, Jian [5 ,6 ]
机构
[1] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Real Doctor AI Res Ctr, Hangzhou, Peoples R China
[3] Alibaba Grp, Hangzhou, Peoples R China
[4] Univ Notre Dame, Dept Comp Sci & Engn, Notre Dame, IN 46556 USA
[5] Zhejiang Univ, Sch Publ Hlth, Affiliated Hosp 2, Sch Med, Hangzhou 310058, Peoples R China
[6] Zhejiang Univ, Inst Wenzhou, Hangzhou 310058, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Adaptive Key Frame Selection; Morphokinetics parameters; Blastocyst formation prediction; TLM videos; IMPLANTATION; EMBRYOS; SCORE;
D O I
10.1007/978-3-031-16440-8_43
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Effective approaches for accurately predicting the developmental potential of embryos and selecting suitable embryos for blastocyst culture are critically needed. Many deep learning (DL) based methods for time-lapse monitoring (TLM) videos have been proposed to tackle this problem. Although fruitful, these methods are either ineffective when processing long TLM videos, or need extra annotations to determine the morphokinetics parameters of embryos. In this paper, we propose Adaptive Key Frame Selection (AdaKFS), a new framework that adaptively selects informative frames on per-input basis to predict blastocyst formation using TLM videos at the cleavage stage on day 3. For each time step, a policy network decides whether to use or skip the current frame. Further, a prediction network generates prediction using the morphokinetics features of the selected frames. We efficiently train and enhance the frame selection process by using a Gumbel-Softmax sampling approach and a reward function, respectively. Comprehensive experiments on a large TLM video dataset verify the performance superiority of our new method over state-of-the-art methods.
引用
收藏
页码:445 / 455
页数:11
相关论文
共 50 条
  • [21] TIME-LAPSE IMAGING AND ITS POTENTIAL TO IMPROVE EMBRYO SELECTION IN IVF
    Luca, Andreea
    Butnaru, Maria
    Luca, A.
    Bors, A.
    Dumitrascu, Irina
    Nemescu, D.
    Onofriescu, M.
    MEDICAL-SURGICAL JOURNAL-REVISTA MEDICO-CHIRURGICALA, 2015, 119 (03): : 749 - 756
  • [22] NON-INVASIVE TECHNOLOGY COMBINING TIME-LAPSE IMAGING AND STATISTICAL MODELING: BRINGING AUTOMATION INTO THE LAB TO IMPROVE BLASTOCYST SELECTION
    Behr, B.
    Tan, L.
    Conaghan, J.
    Liebermann, J.
    Bartolucci, A.
    Chen, A. A.
    FERTILITY AND STERILITY, 2015, 104 (03) : E152 - E152
  • [23] EMBRYOLOGIST INTERPRETATION OF TIME-LAPSE IMAGING PARAMETERS AT THE BLASTOCYST STAGE DO NOT ALTER SELECTION AMONG TRANSFERRED EUPLOID BLASTOCYSTS.
    Hong, K. H.
    Werner, M. D.
    Franasiak, J. M.
    Forman, E. J.
    Prodoehl, A.
    Upham, K.
    Scott, K.
    Scott, R. T., Jr.
    FERTILITY AND STERILITY, 2014, 102 (03) : E305 - E305
  • [24] Automating Embryo Development Stage Detection in Time-Lapse Imaging with Synergic Loss and Temporal Learning
    Lockhart, Lisette
    Saeedi, Parvaneh
    Au, Jason
    Havelock, Jon
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT V, 2021, 12905 : 540 - 549
  • [25] A predictive model for blastocyst formation based on morphokinetic parameters in time-lapse monitoring of embryo development
    Milewski, Robert
    Kuc, Pawel
    Kuczynska, Agnieszka
    Stankiewicz, Bozena
    Lukaszuk, Krzysztof
    Kuczynski, Waldemar
    JOURNAL OF ASSISTED REPRODUCTION AND GENETICS, 2015, 32 (04) : 571 - 579
  • [26] A predictive model for blastocyst formation based on morphokinetic parameters in time-lapse monitoring of embryo development
    Robert Milewski
    Paweł Kuć
    Agnieszka Kuczyńska
    Bożena Stankiewicz
    Krzysztof Łukaszuk
    Waldemar Kuczyński
    Journal of Assisted Reproduction and Genetics, 2015, 32 : 571 - 579
  • [27] Time-lapse imaging of cytoplasmic strings at the blastocyst stage suggests their association with spontaneous blastocoel collapse
    Ebner, Thomas
    Sesli, Oezcan
    Kresic, Sanja
    Enengl, Sabine
    Stoiber, Barbara
    Reiter, Elisabeth
    Oppelt, Peter
    Mayer, Richard Bernhard
    Shebl, Omar
    REPRODUCTIVE BIOMEDICINE ONLINE, 2020, 40 (02) : 191 - 199
  • [28] The association between pronuclei parameters and blastocyst formation - a pixel-level time-lapse imaging study based on AI segmentation
    Zhao, M.
    Jing, F.
    Sijia, W.
    Leung, C. David Yiu
    HUMAN REPRODUCTION, 2023, 38
  • [29] Cyclone Frame Prediction by Gaussian Mixture Modeling of the Three Penultimate Time-Lapse Frames
    Susan, Seba
    Saxena, Achin
    Budhwar, Anuvart
    Takhi, Akshay
    Varshney, Abhishek
    JOURNAL OF THE INDIAN SOCIETY OF REMOTE SENSING, 2017, 45 (05) : 899 - 901
  • [30] Cyclone Frame Prediction by Gaussian Mixture Modeling of the Three Penultimate Time-Lapse Frames
    Seba Susan
    Achin Saxena
    Anuvart Budhwar
    Akshay Takhi
    Abhishek Varshney
    Journal of the Indian Society of Remote Sensing, 2017, 45 : 899 - 901