Constraining dynamical models with observational data

被引:0
|
作者
Bovy, Jo [1 ]
机构
[1] Inst Adv Study, Einstein Dr, Princeton, NJ 08540 USA
来源
SETTING THE SCENE FOR GAIA AND LAMOST | 2014年 / 9卷 / 298期
关键词
Galaxy: abundances; Galaxy: disk; Galaxy: fundamental parameters; Galaxy: general; Galaxy: kinematics and dynamics; Galaxy: stellar content; Galaxy: structure; ISM: kinematics and dynamics; solar neighborhood; SURFACE MASS DENSITY; NEARBY STARS; SPECTROSCOPIC SURVEY; GALACTIC DISK; GALAXIES; MILKY; HALO;
D O I
10.1017/S1743921313006352
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The spatial distribution and kinematics of stars in the Milky Way are linked through the gravitational potential. Observations of the positions and velocities of stars can therefore be used to measure the mass distribution of the Milky Way. I review steady-state dynamical modeling approaches and illustrate their use in constraining the local matter distribution and the circular velocity curve from the kinematics of stellar tracers. In a few years, Gaia will increase the number of precise positions and velocities by multiple orders of magnitude. I describe some of the dynamical analyses that will be possible with the Gaia data and discuss some promising avenues for the optimal analysis of dynamical data.
引用
收藏
页码:185 / 194
页数:10
相关论文
共 50 条
  • [41] Constraining Ionospheric Models with Radio Interferometric Self-Calibration Data
    Wijnholds, Stefan J.
    2017 XXXIIND GENERAL ASSEMBLY AND SCIENTIFIC SYMPOSIUM OF THE INTERNATIONAL UNION OF RADIO SCIENCE (URSI GASS), 2017,
  • [42] Observational H(z) data and cosmological models
    Wei, Hao
    Zhang, Shuang Nan
    PHYSICS LETTERS B, 2007, 644 (01) : 7 - 15
  • [43] MODELS OF DISKS OF GALAXIES - COMPARISON WITH OBSERVATIONAL DATA
    ZASOV, AV
    MOROZOV, AG
    ASTRONOMICHESKII ZHURNAL, 1985, 62 (03): : 475 - 481
  • [44] Some models and methods for the analysis of observational data
    Ferreira, Jose A.
    STATISTICS SURVEYS, 2015, 9 : 106 - 208
  • [45] Using Observational Data to Calibrate Simulation Models
    Murray, Eleanor J.
    Robins, James M.
    Seage, George R., III
    Lodi, Sara
    Hyle, Emily P.
    Reddy, Krishna P.
    Freedberg, Kenneth A.
    Hernan, Miguel A.
    MEDICAL DECISION MAKING, 2018, 38 (02) : 212 - 224
  • [46] Constraining dynamical dark energy models through the abundance of high-redshift supermassive black holes
    Lamastra, A.
    Menci, N.
    Fiore, F.
    Di Porto, C.
    Amendola, L.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 420 (03) : 2429 - 2444
  • [47] Observational constraints on non-flat dynamical dark energy cosmological models
    Farooq, Omer
    Mania, Data
    Ratra, Bharat
    ASTROPHYSICS AND SPACE SCIENCE, 2015, 357 (01)
  • [48] Observational constraints on non-flat dynamical dark energy cosmological models
    Omer Farooq
    Data Mania
    Bharat Ratra
    Astrophysics and Space Science, 2015, 357
  • [49] Dynamical models of a suspension bridge driven by vibration data
    Gattulli, Vincenzo
    Cunha, Alvaro
    Caetano, Elsa
    Potenza, Francesco
    Arena, Andrea
    Di Sabatino, Umberto
    SMART STRUCTURES AND SYSTEMS, 2021, 27 (02) : 139 - 156
  • [50] Adapting PINN Models of Physical Entities to Dynamical Data
    Tarkhov, Dmitriy
    Lazovskaya, Tatiana
    Antonov, Valery
    COMPUTATION, 2023, 11 (09)