Constraining dynamical models with observational data

被引:0
|
作者
Bovy, Jo [1 ]
机构
[1] Inst Adv Study, Einstein Dr, Princeton, NJ 08540 USA
来源
SETTING THE SCENE FOR GAIA AND LAMOST | 2014年 / 9卷 / 298期
关键词
Galaxy: abundances; Galaxy: disk; Galaxy: fundamental parameters; Galaxy: general; Galaxy: kinematics and dynamics; Galaxy: stellar content; Galaxy: structure; ISM: kinematics and dynamics; solar neighborhood; SURFACE MASS DENSITY; NEARBY STARS; SPECTROSCOPIC SURVEY; GALACTIC DISK; GALAXIES; MILKY; HALO;
D O I
10.1017/S1743921313006352
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The spatial distribution and kinematics of stars in the Milky Way are linked through the gravitational potential. Observations of the positions and velocities of stars can therefore be used to measure the mass distribution of the Milky Way. I review steady-state dynamical modeling approaches and illustrate their use in constraining the local matter distribution and the circular velocity curve from the kinematics of stellar tracers. In a few years, Gaia will increase the number of precise positions and velocities by multiple orders of magnitude. I describe some of the dynamical analyses that will be possible with the Gaia data and discuss some promising avenues for the optimal analysis of dynamical data.
引用
收藏
页码:185 / 194
页数:10
相关论文
共 50 条
  • [21] Constraining models of initial conditions with elliptic and triangular flow data
    Retinskaya, Ekaterina
    Luzum, Matthew
    Ollitrault, Jean-Yves
    PHYSICAL REVIEW C, 2014, 89 (01):
  • [22] Cosmological models and latest observational data
    Hao Wei
    The European Physical Journal C, 2009, 60 : 449 - 455
  • [23] Constraining viscous dark energy models with the latest cosmological data
    Deng Wang
    Yang-Jie Yan
    Xin-He Meng
    The European Physical Journal C, 2017, 77
  • [24] Testing Reanalyses in Constraining Dynamical Downscaling
    Li, Delei
    von Storch, Hans
    Geyer, Beate
    JOURNAL OF THE METEOROLOGICAL SOCIETY OF JAPAN, 2016, 94A : 47 - 68
  • [25] CONSTRAINT ON THE KINEMATICAL AND DYNAMICAL MODEL FROM THE LATEST OBSERVATIONAL DATA
    Lu, Jianbo
    Wu, Yabo
    Xu, Lixin
    MODERN PHYSICS LETTERS A, 2010, 25 (36) : 3033 - 3046
  • [26] Comment on “Constraining the smoothness parameter and dark energy using observational H(z) data”
    V.C.Busti
    R.C.Santos
    ResearchinAstronomyandAstrophysics, 2011, 11 (06) : 637 - 640
  • [27] Comment on "Constraining the smoothness parameter and dark energy using observational H(z) data"
    Busti, V. C.
    Santos, R. C.
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2011, 11 (06): : 637 - 640
  • [28] Reconstructing dynamical models from optogenetic data
    Sorinel A Oprisan
    Patrick E Lynn
    Tamas Tompa
    Antonieta Lavin
    BMC Neuroscience, 16 (Suppl 1)
  • [29] Generative dynamical models for classification of rsfMRI data
    Huckins, Grace
    Poldrack, Russell A.
    NETWORK NEUROSCIENCE, 2024, 8 (04): : 1613 - 1633
  • [30] GEOMETRIC AND DYNAMICAL MODELS OF REVERBERATION MAPPING DATA
    Pancoast, Anna
    Brewer, Brendon J.
    Treu, Tommaso
    ASTROPHYSICAL JOURNAL, 2011, 730 (02):