A study of 2DEG properties in AlGaN/GaN heterostructure using GaN/AlN superlattice as barrier layers grown by MOCVD

被引:5
|
作者
Chen, Fangsheng [1 ,2 ]
Chen, Hong [2 ]
Deng, Zhen [2 ]
Lu, Taiping [2 ]
Fang, Yutao [2 ]
Jiang, Yang [2 ]
Ma, Ziguang [2 ]
He, Miao [1 ]
机构
[1] S China Normal Univ, Key Lab Electroluminescent Devices, Guangdong Prov Educ Dept, Inst Optoelect Mat & Technol, Guangzhou 510631, Guangdong, Peoples R China
[2] Chinese Acad Sci, Key Lab Renewable Energy, Beijing Key Lab New Energy Mat & Devices, Beijing Natl Lab Condense Matter Phys,Inst Phys, Beijing 100190, Peoples R China
来源
基金
高等学校博士学科点专项科研基金;
关键词
VAPOR-PHASE EPITAXY; HEMT STRUCTURE; GAN; SAPPHIRE; ALN;
D O I
10.1007/s00339-014-8906-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
GaN/AlN superlattice (SL) structures working as quasi-AlGaN barrier layers for GaN-based high electron mobility transistor have been grown by metal-organic chemical vapor deposition. The influences of the SL period thickness on the electrical properties of two-dimensional electron gas (2DEG) have been investigated. It is found that the sheet carrier concentration increases as the increase in period thickness at a certain equivalent Al composition, and the electron mobility is strongly dependent on the AlN thickness in a period. We consider that AlN transits from two-dimensional growth to three-dimensional (3D) growth when AlN thickness exceeds its critical thickness. The 3D growth mode results in rough interface and surface morphology, which rapidly decreases the electron mobility due to the increase in interface roughness scattering and dislocation scattering to 2DEG.
引用
收藏
页码:1453 / 1457
页数:5
相关论文
共 50 条
  • [21] Improvement in surface morphology and 2DEG properties of AlGaN/GaN HEMT
    Narang, Kapil
    Bag, Rajesh K.
    Singh, Vikash K.
    Pandey, Akhilesh
    Saini, Sachin K.
    Khan, Ruby
    Arora, Aman
    Padmavati, M. V. G.
    Tyagi, Renu
    Singh, Rajendra
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 815
  • [22] Relation between microstructure and 2DEG properties of AlGaN/GaN structures
    Van Daele, B
    Van Tendeloo, G
    German, M
    Leys, M
    Bougrioua, Z
    Moerman, I
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2002, 234 (03): : 830 - 834
  • [23] Mobility enhancement of 2DEG in MOVPE-grown AlGaN/AlN/GaN HEMT structure using vicinal (0001) sapphire
    Hu, Weiguo
    Ma, Bei
    Li, Dabing
    Narukawa, Mitsuhisa
    Miyake, Hideto
    Hiramatsu, Kazumasa
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2009, 46 (06) : 812 - 816
  • [24] AlGaN/AlN/GaN HEMT结构2DEG的光致发光谱
    唐健
    王晓亮
    肖红领
    [J]. 半导体技术, 2014, 39 (09) : 703 - 706
  • [25] Characterization and modeling of 2DEG mobility in AlGaN/AlN/GaN MIS-HEMT
    Nifa, I
    Leroux, C.
    Torres, A.
    Charles, M.
    Reimbold, G.
    Ghibaudo, G.
    Bano, E.
    [J]. MICROELECTRONIC ENGINEERING, 2019, 215
  • [26] 2DEG transport properties in AlGaN/GaN double heterostructure HEMT with high In composition InGaN channel
    Peng, Daqing
    Dong, Xun
    Li, Zhonghui
    Zhang, Dongguo
    Li, Liang
    Ni, Jinyu
    Luo, Weike
    [J]. ENERGY AND POWER TECHNOLOGY, PTS 1 AND 2, 2013, 805-806 : 1027 - 1030
  • [27] Hall resistance hysteresis in AlGaN/GaN 2DEG
    Tsubaki, K
    Maeda, N
    Saitoh, T
    Kobayashi, N
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 21 (2-4): : 676 - 678
  • [28] Gas Sensing with AlGaN/GaN 2DEG Channels
    Offermans, Peter
    Vitushinsky, Roman
    Crego-Calama, Mercedes
    Brongersma, Sywert H.
    [J]. EUROSENSORS XXV, 2011, 25
  • [29] MODELLING 2DEG CHARGES IN AlGaN/GaN HETEROSTRUCTURES
    Longobardi, Giorgia
    Udrea, Florin
    Sque, Stephen
    Croon, Jeroen
    Hurkx, Fred
    Napoli, Ettore
    Sonsky, Jan
    [J]. 2012 INTERNATIONAL SEMICONDUCTOR CONFERENCE (CAS), VOLS 1 AND 2, 2012, 2 : 363 - 366
  • [30] Magneto-optical confirmation of Landau level splitting in a GaN/AlGaN 2DEG grown on bulk GaN
    Schmult, Stefan
    Solovyev, Victor V.
    Wirth, Steffen
    Grosser, Andreas
    Mikolajick, Thomas
    Kukushkin, Igor V.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2019, 37 (02):