A Gibbs Sampling-based approach for parameter estimation of the EGK distribution

被引:1
|
作者
El Ayadi, Moataz M. H. [1 ]
Ismail, Mahmoud H. [2 ,3 ]
机构
[1] Cairo Univ, Fac Engn, Dept Engn Math & Phys, Giza 12613, Egypt
[2] Amer Univ Sharjah, Dept Elect Engn, POB 26666, Sharjah, U Arab Emirates
[3] Cairo Univ, Fac Engn, Dept Elect & Elect Commun Engn, Giza 12613, Egypt
来源
SIGNAL PROCESSING | 2021年 / 187卷
关键词
Gibbs sampling; Bayesian estimation; Posterior distributions; EGK Distribution; FADING CHANNEL; MODEL;
D O I
10.1016/j.sigpro.2021.108166
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a novel approach for estimating the parameters of the extended generalized-K (EGK) distri-bution commonly used as a fading model in wireless and optical communications links. The proposed method is based on the Gibbs sampling technique and does not require solving nonlinear equations nor performing numerical integrations. Numerical and simulation results are presented showing that the es-timated and original distributions are virtually indistinguishable and formal metrics like Kullback-Leibler (KL) divergence, the mean integrated squared bias (MISB), the mean integrated variance (MIV) and the mean integrated squared error (MISE) all show excellent agreement between the two as well. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Gibbs Sampling-based Sparse Estimation Method over Underwater Acoustic Channels
    Tong, Wentao
    Ge, Wei
    Jia, Yizhen
    Zhang, Jiaheng
    [J]. JOURNAL OF MARINE SCIENCE AND APPLICATION, 2024, 23 (02) : 434 - 442
  • [2] wRACOG: A Gibbs Sampling-Based Oversampling Technique
    Das, Barnan
    Krishnan, Narayanan C.
    Cook, Diane J.
    [J]. 2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2013, : 111 - 120
  • [3] Sampling-based estimation method for parameter estimation in big data business era
    Alim, Abdul
    Shukla, Diwakar
    [J]. JOURNAL OF ADVANCES IN MANAGEMENT RESEARCH, 2021, 18 (02) : 297 - 322
  • [4] A compressive sampling-based method for classification and parameter estimation of FSK signals
    De Vito, Luca
    Dobre, Octavia A.
    [J]. MEASUREMENT, 2017, 98 : 439 - 444
  • [5] PARAMETER ESTIMATION OF GIBBS CANONICAL DISTRIBUTION
    CHAKRABARTI, CG
    [J]. INDIAN JOURNAL OF PHYSICS, 1970, 44 (01) : 65 - +
  • [6] A sampling-based approach to Nonparametric dynamic system identification and estimation
    Oh, SW
    Kim, J
    Sastry, S
    [J]. PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 873 - 879
  • [7] Gibbs sampling approach to estimation and prediction of time-varying-parameter models
    Min, CK
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1998, 27 (02) : 171 - 194
  • [8] Simultaneous active parameter estimation and control using sampling-based Bayesian reinforcement learning
    Slade, Patrick
    Culbertson, Preston
    Sunberg, Zachary
    Kochenderfer, Mykel
    [J]. 2017 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2017, : 804 - 810
  • [9] A sampling-based approach to information recovery
    Xie, Junyi
    Yang, Jun
    Chen, Yuguo
    Wang, Haixun
    Yu, Philip S.
    [J]. 2008 IEEE 24TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, VOLS 1-3, 2008, : 476 - +
  • [10] Distributed Gibbs: A Linear-Space Sampling-Based DCOP Algorithm
    Duc Thien Nguyen
    Yeoh, William
    Lau, Hoong Chuin
    Zivan, Roie
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2019, 64 : 705 - 748