A Gibbs Sampling-based approach for parameter estimation of the EGK distribution

被引:1
|
作者
El Ayadi, Moataz M. H. [1 ]
Ismail, Mahmoud H. [2 ,3 ]
机构
[1] Cairo Univ, Fac Engn, Dept Engn Math & Phys, Giza 12613, Egypt
[2] Amer Univ Sharjah, Dept Elect Engn, POB 26666, Sharjah, U Arab Emirates
[3] Cairo Univ, Fac Engn, Dept Elect & Elect Commun Engn, Giza 12613, Egypt
关键词
Gibbs sampling; Bayesian estimation; Posterior distributions; EGK Distribution; FADING CHANNEL; MODEL;
D O I
10.1016/j.sigpro.2021.108166
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a novel approach for estimating the parameters of the extended generalized-K (EGK) distri-bution commonly used as a fading model in wireless and optical communications links. The proposed method is based on the Gibbs sampling technique and does not require solving nonlinear equations nor performing numerical integrations. Numerical and simulation results are presented showing that the es-timated and original distributions are virtually indistinguishable and formal metrics like Kullback-Leibler (KL) divergence, the mean integrated squared bias (MISB), the mean integrated variance (MIV) and the mean integrated squared error (MISE) all show excellent agreement between the two as well. (c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] A simulation based approach to the parameter estimation for the three-parameter gamma distribution
    Pang, WK
    Hou, SH
    Yu, BWT
    Li, KWK
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2004, 155 (03) : 675 - 682
  • [42] Heuristic based sampling in estimation of distribution algorithms:: An initial approach
    de la Ossa, L
    Gámez, JA
    Puerta, JM
    [J]. CURRENT TOPICS IN ARTIFICIAL INTELLIGENCE, 2004, 3040 : 384 - 393
  • [43] Sub-Nyquist sampling-based wideband spectrum sensing: a compressed power spectrum estimation approach
    Jilin Wang
    Yinsen Huang
    Bin Wang
    [J]. Frontiers of Computer Science, 2024, 18
  • [44] Sub-Nyquist sampling-based wideband spectrum sensing: a compressed power spectrum estimation approach
    Wang, Jilin
    Huang, Yinsen
    Wang, Bin
    [J]. FRONTIERS OF COMPUTER SCIENCE, 2024, 18 (02)
  • [45] A Gibbs sampling approach to maximum a posteriori time delay and amplitude estimation
    Michalopoulou, ZH
    Picarelli, M
    [J]. 2002 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-IV, PROCEEDINGS, 2002, : 3001 - 3004
  • [46] A sampling-based approach for handling delays in continuous and hybrid systems
    Abdelwahab, Erzana Berani
    Fraenzle, Martin
    [J]. IT-INFORMATION TECHNOLOGY, 2021, 63 (5-6): : 289 - 298
  • [47] A general sampling-based SMPC approach to spacecraft proximity operations
    Mammarella, M.
    Capello, E.
    Lorenzen, M.
    Dabbene, F.
    Allgoewer, F.
    [J]. 2017 IEEE 56TH ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2017,
  • [48] Adaptive direct sampling-based approach to ore grade modeling
    Li, Zhanglin
    Yi, Shuihan
    Wang, Ning
    Zhang, Xialin
    Chen, Qiyu
    Liu, Gang
    [J]. EARTH SCIENCE INFORMATICS, 2024, 17 (03) : 2537 - 2554
  • [49] Sampling-based approach for design optimization in the presence of interval variables
    David Yoo
    Ikjin Lee
    [J]. Structural and Multidisciplinary Optimization, 2014, 49 : 253 - 266
  • [50] Quantum Ensemble Classification: A Sampling-Based Learning Control Approach
    Chen, Chunlin
    Dong, Daoyi
    Qi, Bo
    Petersen, Ian R.
    Rabitz, Herschel
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2017, 28 (06) : 1345 - 1359