Gibbs Sampling-based Sparse Estimation Method over Underwater Acoustic Channels

被引:0
|
作者
Tong, Wentao [1 ,2 ,3 ]
Ge, Wei [4 ,5 ]
Jia, Yizhen [1 ,2 ,3 ]
Zhang, Jiaheng [1 ,2 ,3 ]
机构
[1] Harbin Engn Univ, Natl Key Lab Underwater Acoust Technol, Harbin 150001, Peoples R China
[2] Harbin Engn Univ, Key Lab Polar Acoust & Applicat, Minist Educ, Harbin 150001, Peoples R China
[3] Harbin Engn Univ, Coll Underwater Acoust Engn, Harbin 150001, Peoples R China
[4] Harbin Engn Univ, Qingdao Innovat & Dev Ctr, Qingdao 266400, Peoples R China
[5] Chinese Acad Sci, State Key Lab Acoust, Inst Acoust, Beijing 100190, Peoples R China
关键词
Sparse bayesian learning; Channel estimation; Variational inference; Gibbs sampling; OFDM; ALGORITHM; OMP;
D O I
10.1007/s11804-024-00415-4
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
The estimation of sparse underwater acoustic (UWA) channels can be regarded as an inference problem involving hidden variables within the Bayesian framework. While the classical sparse Bayesian learning (SBL), derived through the expectation maximization (EM) algorithm, has been widely employed for UWA channel estimation, it still differs from the real posterior expectation of channels. In this paper, we propose an approach that combines variational inference (VI) and Markov chain Monte Carlo (MCMC) methods to provide a more accurate posterior estimation. Specifically, the SBL is first re-derived with VI, allowing us to replace the posterior distribution of the hidden variables with a variational distribution. Then, we determine the full conditional probability distribution for each variable in the variational distribution and then iteratively perform random Gibbs sampling in MCMC to converge the Markov chain. The results of simulation and experiment indicate that our estimation method achieves lower mean square error and bit error rate compared to the classic SBL approach. Additionally, it demonstrates an acceptable convergence speed.
引用
收藏
页码:434 / 442
页数:9
相关论文
共 50 条
  • [1] A Gibbs Sampling-based approach for parameter estimation of the EGK distribution
    El Ayadi, Moataz M. H.
    Ismail, Mahmoud H.
    [J]. SIGNAL PROCESSING, 2021, 187
  • [2] Joint channel estimation and detection using Markov chain Monte Carlo method over sparse underwater acoustic channels
    Jing, Lianyou
    He, Chengbing
    Huang, Jianguo
    Ding, Zhi
    [J]. IET COMMUNICATIONS, 2017, 11 (11) : 1789 - 1796
  • [3] wRACOG: A Gibbs Sampling-Based Oversampling Technique
    Das, Barnan
    Krishnan, Narayanan C.
    Cook, Diane J.
    [J]. 2013 IEEE 13TH INTERNATIONAL CONFERENCE ON DATA MINING (ICDM), 2013, : 111 - 120
  • [4] Efficient Estimation and Prediction for Sparse Time-Varying Underwater Acoustic Channels
    Zhang, Yi
    Venkatesan, Ramachandran
    Dobre, Octavia A.
    Li, Cheng
    [J]. IEEE JOURNAL OF OCEANIC ENGINEERING, 2020, 45 (03) : 1112 - 1125
  • [5] Chirp Z-Transform Based Sparse Channel Estimation for Underwater Acoustic OFDM in Clustered Channels
    Qiao, Gang
    Qiang, Xizhu
    Wan, Lei
    Xiao, Yuzhu
    [J]. OCEANS 2018 MTS/IEEE CHARLESTON, 2018,
  • [6] Multibranch Autocorrelation Method for Doppler Estimation in Underwater Acoustic Channels
    Li, Jianghui
    Zakharov, Yuriy V.
    Henson, Benjamin
    [J]. IEEE JOURNAL OF OCEANIC ENGINEERING, 2018, 43 (04) : 1099 - 1113
  • [7] Prediction based sparse channel estimation for underwater acoustic OFDM
    Lin, Na
    Sun, Haixin
    Cheng, En
    Qi, Jie
    Kuai, Xiaoyan
    Yan, Jiaquan
    [J]. APPLIED ACOUSTICS, 2015, 96 : 94 - 100
  • [8] Underwater acoustic channel estimation based on sparse recovery algorithms
    Qi, C.
    Wang, X.
    Wu, L.
    [J]. IET SIGNAL PROCESSING, 2011, 5 (08) : 739 - 747
  • [9] An Improved Sparse Underwater Acoustic OFDM Channel Estimation Method Based On Joint Sparse Model and Exponential Smoothing
    Wang, Zuofu
    Wu, Han
    Liu, Shengxing
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, COMMUNICATIONS AND COMPUTING (ICSPCC), 2017,
  • [10] Variable step size p-norm-like constraint sparse underwater acoustic channels estimation method
    Sui, Zeping
    Yan, Shefeng
    Liu, Guopeng
    [J]. Shengxue Xuebao/Acta Acustica, 2021, 46 (05): : 664 - 676