MDG and SNR Estimation in SDM Transmission Based on Artificial Neural Networks

被引:3
|
作者
Ospina, Ruby S. B. [1 ]
van den Hout, Menno [2 ]
van der Heide, Sjoerd [2 ]
van Weerdenburg, John [3 ,4 ]
Ryf, Roland [5 ]
Fontaine, Nicolas K. [5 ]
Chen, Haoshuo [5 ]
Amezcua-Correa, Rodrigo [6 ]
Okonkwo, Chigo [2 ]
Mello, Darli A. A. [1 ]
机构
[1] Univ Estadual Campinas, Sch Elect & Comp Engn, BR-13083970 Campinas, Brazil
[2] Eindhoven Univ Technol, High Capac Opt Transmiss Lab, Electroopt Commun Grp, NL-5600 MB Eindhoven, Netherlands
[3] Eindhoven Univ Technol, NL-5600 MB Eindhoven, Netherlands
[4] Infinera, San Jose, CA 95119 USA
[5] Nokia Bell Labs, Holmdel, NJ 07733 USA
[6] Univ Cent Florida, Coll Opt & Photon, CREOL, Orlando, FL 32816 USA
基金
巴西圣保罗研究基金会;
关键词
Mode-dependent gain; mode-dependent loss; optical fiber communications; space division multiplexing; MODE; RECEIVERS; CAPACITY; FIBERS; GAIN;
D O I
10.1109/JLT.2022.3174778
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The increase in capacity provided by coupled space division multiplexing (SDM) systems is fundamentally limited by mode-dependent gain (MDG) and amplified spontaneous emission (ASE) noise. Therefore, monitoring MDG and optical signalto-noise ratio (SNR) is essential for accurate performance evaluation and troubleshooting. Recent works show that the conventional MDG estimation method based on the transfer matrix of multipleinput multiple-output(MIMO) equalizers optimizing the minimum mean square error (MMSE) underestimates the actual value at low SNRs. Besides, estimating the optical SNR itself is not a trivial task in SDM systems, as MDG strongly influences the electrical SNR after the equalizer. In a recent work we propose an MDG and SNR estimation method using artificial neural networks (ANNs). The proposed ANN-based method processes features extracted at the receiver after digital signal processing (DSP). In this paper, we discuss the ANN-based method in detail, and validate it in an experimental 73-km 3-mode transmission link with controlled MDG and SNR. After validation, we apply the method in a case study consisting of an experimental long-haul 6-mode link. The results show that the ANN estimates both MDG and SNR with high accuracy, outperforming conventional methods.
引用
收藏
页码:5021 / 5030
页数:10
相关论文
共 50 条
  • [41] Probability density estimation using artificial neural networks
    Likas, A
    COMPUTER PHYSICS COMMUNICATIONS, 2001, 135 (02) : 167 - 175
  • [42] Efficient estimation of osteoporosis using artificial neural networks
    Lemineur, Gerald
    Harba, Rachid
    Kilic, Niyazi
    Ucan, Osman N.
    Osman, Onur
    Benhamou, Laurent
    IECON 2007: 33RD ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, VOLS 1-3, CONFERENCE PROCEEDINGS, 2007, : 3039 - +
  • [43] Hurst Parameter Estimation Using Artificial Neural Networks
    Ledesma-Orozco, S.
    Ruiz-Pinales, J.
    Garcia-Hernandez, G.
    Cerda-Villafana, G.
    Hernandez-Fusilier, D.
    JOURNAL OF APPLIED RESEARCH AND TECHNOLOGY, 2011, 9 (02) : 227 - 241
  • [44] DIRECTION OF ARRIVAL ESTIMATION USING ARTIFICIAL NEURAL NETWORKS
    JHA, S
    DURRANI, T
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1991, 21 (05): : 1192 - 1201
  • [45] Artificial neural networks for the cost estimation of stamping dies
    Burcu Özcan
    Alpaslan Fığlalı
    Neural Computing and Applications, 2014, 25 : 717 - 726
  • [46] The Application of Artificial Neural Networks in Indirect Cost Estimation
    Lesniak, Agnieszka
    11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1312 - 1315
  • [47] Estimation of postmortem period by means of artificial neural networks
    Chibat, Ahmed
    Zerdazi, Dalel
    Rahmani, Fouad Lazhar
    ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2016, 9 (02) : 326 - 339
  • [48] Estimation of daily evaporation using artificial neural networks
    Doǧan, Emrah
    Işik, Sabahattin
    Sandalci, Mehmet
    Teknik Dergi/Technical Journal of Turkish Chamber of Civil Engineers, 2007, 18 (02): : 4119 - 4131
  • [49] Convergence rate of Artificial Neural Networks for estimation in software
    Rankovic, Dragica
    Rankovic, Nevena
    Ivanovic, Mirjana
    Lazic, Ljubomir
    INFORMATION AND SOFTWARE TECHNOLOGY, 2021, 138
  • [50] Data fusion and artificial neural networks for biomass estimation
    Leal, RR
    Butler, P
    Lane, P
    Payne, PA
    IEE PROCEEDINGS-SCIENCE MEASUREMENT AND TECHNOLOGY, 1997, 144 (02) : 69 - 72