Thin, Fully Depleted Monolithic Active Pixel Sensor based on 3D Integration of Heterogeneous CMOS Layers

被引:6
|
作者
Dulinski, W. [1 ]
Bertolone, G. [1 ]
de Masi, R. [1 ]
Degerli, Y. [2 ]
Dorokhov, A. [1 ]
Morel, F. [1 ]
Orsini, F. [2 ]
Ratti, L. [3 ,4 ]
Santos, C. [1 ]
Re, V. [4 ,5 ]
Wei, X. [1 ]
Winter, M. [1 ]
机构
[1] ULP, IPHC, IN2P3, 23 Rue Loess, F-67037 Strasbourg, France
[2] CEA Saclay, IRFU, SEDI, F-91191 Gif Sur Yvette, France
[3] Univ Pavia, Pavia, Italy
[4] Ist Nazl Fis Nucl, Sez Pavia, Pavia, Italy
[5] Univ Bergamo, Bergamo, Italy
关键词
D O I
10.1109/NSSMIC.2009.5402398
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
On the way towards fast, radiation tolerant and ultra thin CMOS radiation sensors, we propose new generation of devices based on commercial availability of vertical integration of several CMOS wafers (3D Electronics). In this process, each wafer may be thinned down to about 10 microns end equipped with through-silicon vias (TSV) allowing for electrical interconnection between wafers at a very small pitch (few microns) and with a minimum material budget. The proposed prototype device is a 245x245 pixel array with a pitch of 20 pm, providing active area of 5x5 mm2. In the first silicon layer charge sensing diode and first stage buffer amplifier (source follower) are integrated, using CMOS process on high resistivity epitaxial wafers. Outputs of buffer voltage amplifiers are vertically coupled (through a poly-poly capacitor) to the following stage of processing electronics (charge integration, time continuous shaping and signal discrimination), placed in the second silicon layer (0.13 micron CMOS). The third silicon layer (also 0.13 micron CMOS) is used for implementation of digital (binary) readout with a fast, data driven, self-triggering data flow. After description of the proposed 3D device, an update of results from ongoing tests with the first CMOS MAPS prototype fabricated using high-resistivity epitaxial substrate is provided.
引用
收藏
页码:1165 / +
页数:2
相关论文
共 50 条
  • [1] Fully depleted monolithic active pixel sensor in SOI technology
    Kucewicz, W
    Bulgheroni, A
    Caccia, M
    Domanski, K
    Grabiec, P
    Grodner, M
    Jaroszewicz, B
    Jastrzab, M
    Kociubinski, A
    Kucharski, K
    Kuta, S
    Marczewski, J
    Niemiec, H
    Sapor, M
    Tomaszewski, D
    [J]. 2004 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD, VOLS 1-7, 2004, : 1227 - 1230
  • [2] Analysis of 3D stacked fully functional CMOS Active Pixel Sensor detectors
    Passeri, D.
    Servoli, L.
    Meroli, S.
    [J]. JOURNAL OF INSTRUMENTATION, 2009, 4
  • [3] DMAPS: a fully depleted monolithic active pixel sensor - analog performance characterization
    Havranek, M.
    Hemperek, T.
    Krueger, H.
    Fu, Y.
    Germic, L.
    Kishishita, T.
    Marinas, C.
    Obermann, T.
    Wermes, N.
    [J]. JOURNAL OF INSTRUMENTATION, 2015, 10
  • [4] Micrometric laser characterization of a 300 μm fully-depleted monolithic active pixel sensor in standard 110 nm CMOS technology
    Giampaolo, R. A.
    [J]. JOURNAL OF INSTRUMENTATION, 2020, 15 (06):
  • [5] First tests of a novel radiation hard CMOS sensor process for Depleted Monolithic Active Pixel Sensors
    Pernegger, H.
    Bates, R.
    Buttar, C.
    Dalla, M.
    van Hoorne, J. W.
    Kugathasan, T.
    Maneuski, D.
    Musa, L.
    Riedler, P.
    Riegel, C.
    Sbarra, C.
    Schaefer, D.
    Schioppa, E. J.
    Snoeys, W.
    [J]. JOURNAL OF INSTRUMENTATION, 2017, 12
  • [6] Depleted fully monolithic active CMOS pixel sensors (DMAPS) in high resistivity 150 nm technology for LHC
    Hirono, Toko
    Barbero, Marlon
    Barrillon, Pierre
    Bhat, Siddharth
    Breugnon, Patrick
    Caicedo, Ivan
    Chen, Zongde
    Daas, Michael
    Degerli, Yavuz
    Godiot, Stphanie
    Guilloux, Fabrice
    Hemperek, Tomasz
    Huegging, Fabian
    Krueger, Hans
    Pangaud, Patrick
    Rymaszewski, Piotr
    Schwemling, Philippe
    Vandenbroucke, Maxence
    Wang, Tianyang
    Wermes, Norbert
    [J]. NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2019, 924 : 87 - 91
  • [7] Design of ePixM, a fully-depleted monolithic CMOS active pixel sensor for soft X-ray experiments at LCLS-II
    Rota, L.
    Tamma, C.
    Segal, J. D.
    Caragiulo, P.
    Kenney, C.
    Dragone, A.
    [J]. JOURNAL OF INSTRUMENTATION, 2019, 14
  • [8] Monolithic 3D Integration in a CMOS Process Flow
    Fitzgerald, E. A.
    Yoon, S. F.
    Tan, C. S.
    Palacios, T.
    Zhou, X.
    Peh, L. S.
    Boon, C. C.
    Kohen, D. A.
    Lee, K. H.
    Liu, Z. H.
    Choi, P.
    [J]. 2014 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), 2014,
  • [9] A monolithic 3D fully-differential CMOS accelerometer
    Tsai, Ming-Han
    Sun, Chih-Ming
    Wang, Chuanwei
    Lu, Jrhoung
    Fang, Weileun
    [J]. 2008 3RD IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS, VOLS 1-3, 2008, : 1067 - +
  • [10] Heterogeneous Integration toward Monolithic 3D Chip
    Kim, SangHyeon
    Kim, Seong-Kwang
    Shim, Jae-Phil
    Geum, Dae-myeong
    Ju, Gunwu
    Kim, Han Sung
    Lim, Hee Jung
    Lim, Hyeong Rak
    Han, Jae-Hoon
    Kang, ChangMo
    Lee, Dong Seon
    Song, Jin Dong
    Choi, Won Jun
    Kim, Hyung-jun
    [J]. 2017 IEEE SOI-3D-SUBTHRESHOLD MICROELECTRONICS TECHNOLOGY UNIFIED CONFERENCE (S3S), 2017,