Wavefront improvement by IBF-processed correction surfaces

被引:0
|
作者
Feldkamp, Roman [1 ]
机构
[1] JENOPTIK Opt Syst GmbH, Goeschwitzer Str 25, D-07745 Jena, Germany
来源
OPTIFAB 2019 | 2019年 / 11175卷
关键词
Ion Beam Figuring; IBF; wavefront improvement; nanometer precision optics; semiconductor industry;
D O I
10.1117/12.2536776
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Within the modern production of high-precision optics, Ion Beam Figuring (IBF) is an established machining process. IBF uses an ion beam with a Gaussian particle distribution. Atoms are sputtered from the workpiece surface by accelerated ions. Compared to other correction methods (e.g. MRF) IBF provides a significantly smaller tool, enabling precise and deterministic results. The machining takes place contactless in vacuum. Thus the technology qualifies for many unique application possibilities in the production of high performance optics. After a brief introduction to the basics of IBF-technology, this article features various industrial applications: The nanometer accurate correction of optical surfaces, the correction of angular errors as well as smoothing, structuring and decoating of lenses will be presented. Focus of the lecture is the improvement of wavefronts in optical systems using IBF-processed correction surfaces. The complete process is presented and illustrated with examples and results.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] THE QUALITY OF WAVEFRONT CORRECTION IN ADAPTIVE TRANSMITTING SYSTEMS
    BAKUT, PA
    LOGINOV, VA
    KVANTOVAYA ELEKTRONIKA, 1982, 9 (06): : 1167 - 1172
  • [42] Wavefront sensing and correction with the Gemini Planet Imager
    Thomas, S.
    Poyneer, L.
    Savransky, D.
    Macintosh, B.
    Hartung, M.
    Dillon, D.
    Gavel, D.
    Dunn, Jennifer
    Wallace, K.
    Palmer, D.
    de Rosa, Robert
    ADAPTIVE OPTICS SYSTEMS III, 2012, 8447
  • [43] ARGOS wavefront sensing : from detection to correction
    de Xivry, Gilles Orban
    Bonaglia, M.
    Borelli, J.
    Busoni, L.
    Connot, C.
    Esposito, S.
    Gaessler, W.
    Kulas, M.
    Mazzoni, T.
    Puglisi, A.
    Rabien, S.
    Storm, J.
    Ziegleder, J.
    ADAPTIVE OPTICS SYSTEMS IV, 2014, 9148
  • [44] A Wavefront Correction System for the SPICA Coronagraph Instrument
    Kotani, T.
    Enya, K.
    Nakagawa, T.
    Abe, L.
    Miyata, T.
    Sako, S.
    Nakamura, T.
    Haze, K.
    Higuchi, S.
    Tange, Y.
    PATHWAYS TOWARDS HABITABLE PLANETS, 2010, 430 : 477 - +
  • [45] Wavefront correction through image sharpness maximisation
    Murray, LP
    Dainty, JC
    Daly, E
    Opto-Ireland 2005: Imaging and Vision, 2005, 5823 : 40 - 47
  • [46] Combined hardware and computational optical wavefront correction
    South, Fredrick A.
    Kurokawa, Kazuhiro
    Liu, Zhuolin
    Liu, Yuan-Zhi
    Miller, Donald T.
    Boppart, Stephen A.
    BIOMEDICAL OPTICS EXPRESS, 2018, 9 (06): : 2562 - 2574
  • [47] Liquid deformable mirror targets wavefront correction
    不详
    LASER FOCUS WORLD, 2006, 42 (07): : 11 - 11
  • [48] Correction of wavefront aberrations in focal and afocal TMAs
    Andersen, Torben B.
    Granger, Zachary A.
    CURRENT DEVELOPMENTS IN LENS DESIGN AND OPTICAL ENGINEERING XIX, 2018, 10745
  • [49] Bayesian Optimization for Wavefront Sensing and Error Correction
    钱忠华
    丁子涵
    艾铭忠
    郑永祥
    崔金明
    黄运锋
    李传锋
    郭光灿
    Chinese Physics Letters, 2021, 38 (06) : 55 - 59
  • [50] Limitations of the ocular wavefront correction with contact lenses
    Lopez-Gil, Norberto
    Francisco Castejon-Mochon, Jose
    Fernandez-Sanchez, Vicente
    VISION RESEARCH, 2009, 49 (14) : 1729 - 1737