Wavefront improvement by IBF-processed correction surfaces

被引:0
|
作者
Feldkamp, Roman [1 ]
机构
[1] JENOPTIK Opt Syst GmbH, Goeschwitzer Str 25, D-07745 Jena, Germany
来源
OPTIFAB 2019 | 2019年 / 11175卷
关键词
Ion Beam Figuring; IBF; wavefront improvement; nanometer precision optics; semiconductor industry;
D O I
10.1117/12.2536776
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Within the modern production of high-precision optics, Ion Beam Figuring (IBF) is an established machining process. IBF uses an ion beam with a Gaussian particle distribution. Atoms are sputtered from the workpiece surface by accelerated ions. Compared to other correction methods (e.g. MRF) IBF provides a significantly smaller tool, enabling precise and deterministic results. The machining takes place contactless in vacuum. Thus the technology qualifies for many unique application possibilities in the production of high performance optics. After a brief introduction to the basics of IBF-technology, this article features various industrial applications: The nanometer accurate correction of optical surfaces, the correction of angular errors as well as smoothing, structuring and decoating of lenses will be presented. Focus of the lecture is the improvement of wavefronts in optical systems using IBF-processed correction surfaces. The complete process is presented and illustrated with examples and results.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Adaptive Optics Correction of Wavefront Sensorless
    Wu Jiali
    Ke Xizheng
    LASER & OPTOELECTRONICS PROGRESS, 2018, 55 (03)
  • [22] MONOLITHIC PIEZOELECTRIC MIRROR FOR WAVEFRONT CORRECTION
    FEINLEIB, J
    LIPSON, SG
    CONE, PF
    APPLIED PHYSICS LETTERS, 1974, 25 (05) : 311 - 313
  • [23] Improvement of the optical properties after surface error correction of aluminium mirror surfaces
    Ulitschka, M.
    Bauer, J.
    Frost, F.
    Arnold, T.
    JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2021, 17 (01)
  • [24] Wavefront Lens Corrector for Studying Flat Surfaces
    Toropov, M. N.
    Akhsakhalyan, A. A.
    Malyshev, I. V.
    Mikhaylenko, M. S.
    Pestov, A. E.
    Salaschenko, N. N.
    Chernyshov, A. K.
    Chkhalo, N. I.
    TECHNICAL PHYSICS, 2024, 69 (03) : 730 - 734
  • [25] Compliant deformable mirror approach for wavefront improvement
    Clark, James H., III
    Penado, F. Ernesto
    OPTICAL ENGINEERING, 2016, 55 (04)
  • [26] Laboratory integration of the DKIST wavefront correction system
    Johnson, Luke C.
    Cummings, Keith
    Drobilek, Mark
    Johansson, Erik
    Marino, Jose
    Rampy, Rachel
    Richards, Kit
    Rimmele, Thomas
    Sekulic, Predrag
    Woger, Friedrich
    ADAPTIVE OPTICS SYSTEMS VI, 2018, 10703
  • [27] Piezoelectric microactuator technologies for wavefront correction in space
    Yang, Eui-Hyeok
    Hishinuma, Yoshikazu
    Toda, Risaku
    Shcheglov, Kirill
    MICRO (MEMS) AND NANOTECHNOLOGIES FOR DEFENSE AND SECURITY, 2007, 6556
  • [28] Wavefront correction of high intensity femtosecond lasers
    Chériaux, G
    Druon, F
    Maksimchuk, A
    Nantel, M
    Vdovin, G
    Mourou, G
    ULTRAFAST PHENOMENA XI, 1998, 63 : 90 - 91
  • [29] Correction of the wavefront using the irradiance transport equation
    Garcia, M.
    Granados, F.
    Cornejo, A.
    ADAPTIVE OPTICS SYSTEMS, PTS 1-3, 2008, 7015
  • [30] Spherical aberration correction suitable for a wavefront controller
    Itoh, Haruyasu
    Matsumoto, Naoya
    Inoue, Takashi
    OPTICS EXPRESS, 2009, 17 (16): : 14367 - 14373