Fast, sensitive and accurate integration of single-cell data with Harmony

被引:3782
|
作者
Korsunsky, Ilya [1 ,2 ,3 ,4 ,5 ,6 ]
Millard, Nghia [1 ,2 ,3 ,4 ,6 ]
Fan, Jean [7 ]
Slowikowski, Kamil [1 ,2 ,3 ,4 ,5 ,6 ]
Zhang, Fan [1 ,2 ,3 ,4 ,5 ,6 ]
Wei, Kevin [2 ,3 ,4 ]
Baglaenko, Yuriy [1 ,2 ,3 ,4 ,5 ,6 ]
Brenner, Michael [2 ,3 ,4 ]
Loh, Po-ru [1 ,5 ,6 ]
Raychaudhuri, Soumya [1 ,2 ,3 ,4 ,5 ,6 ,8 ]
机构
[1] Brigham & Womens Hosp, Ctr Data Sci, 75 Francis St, Boston, MA 02115 USA
[2] Brigham & Womens Hosp, Dept Med, Div Genet, 75 Francis St, Boston, MA 02115 USA
[3] Brigham & Womens Hosp, Dept Med, Div Rheumatol, 75 Francis St, Boston, MA 02115 USA
[4] Harvard Med Sch, Boston, MA 02115 USA
[5] Harvard Med Sch, Dept Biomed Informat, Boston, MA 02115 USA
[6] Broad Inst MIT & Harvard, Program Med & Populat Genet, Cambridge, MA 02142 USA
[7] Harvard Univ, Dept Chem & Chem Biol, Cambridge, MA 02138 USA
[8] Univ Manchester, Manchester Acad Hlth Sci Ctr, Versus Arthrit Ctr Genet & Genom, Ctr Musculoskeletal Res, Manchester, Lancs, England
基金
美国国家卫生研究院;
关键词
RNA-SEQ; GENE-EXPRESSION; IDENTITY;
D O I
10.1038/s41592-019-0619-0
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The emerging diversity of single-cell RNA-seq datasets allows for the full transcriptional characterization of cell types across a wide variety of biological and clinical conditions. However, it is challenging to analyze them together, particularly when datasets are assayed with different technologies, because biological and technical differences are interspersed. We present Harmony (https://github.com/immunogenomics/harmony), an algorithm that projects cells into a shared embedding in which cells group by cell type rather than dataset-specific conditions. Harmony simultaneously accounts for multiple experimental and biological factors. In six analyses, we demonstrate the superior performance of Harmony to previously published algorithms while requiring fewer computational resources. Harmony enables the integration of similar to 10(6) cells on a personal computer. We apply Harmony to peripheral blood mononuclear cells from datasets with large experimental differences, five studies of pancreatic islet cells, mouse embryogenesis datasets and the integration of scRNA-seq with spatial transcriptomics data.
引用
收藏
页码:1289 / +
页数:14
相关论文
共 50 条
  • [41] A Highly Sensitive, Accurate, and Automated Single-Cell RNA Sequencing Platform with Digital Microfluidics
    Xu, Xing
    Zhang, Qianqian
    Song, Jia
    Ruan, Qingyu
    Ruan, Weidong
    Chen, Yujie
    Yang, Jian
    Zhang, Xuebing
    Song, Yanling
    Zhu, Zhi
    Yang, Chaoyong
    ANALYTICAL CHEMISTRY, 2020, 92 (12) : 8599 - 8606
  • [42] Accurate integration of single-cell DNA and RNA for analyzing intratumor heterogeneity using MaCroDNA
    Edrisi, Mohammadamin
    Huang, Xiru
    Ogilvie, Huw A.
    Nakhleh, Luay
    NATURE COMMUNICATIONS, 2023, 14 (01)
  • [43] A unified computational framework for single-cell data integration with optimal transport
    Kai Cao
    Qiyu Gong
    Yiguang Hong
    Lin Wan
    Nature Communications, 13
  • [44] Spatial integration of multi-omics single-cell data with SIMO
    Yang, Penghui
    Jin, Kaiyu
    Yao, Yue
    Jin, Lijun
    Shao, Xin
    Li, Chengyu
    Lu, Xiaoyan
    Fan, Xiaohui
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [45] Benchmarking atlas-level data integration in single-cell genomics
    Malte D. Luecken
    M. Büttner
    K. Chaichoompu
    A. Danese
    M. Interlandi
    M. F. Mueller
    D. C. Strobl
    L. Zappia
    M. Dugas
    M. Colomé-Tatché
    Fabian J. Theis
    Nature Methods, 2022, 19 : 41 - 50
  • [46] Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis
    T. Lohoff
    S. Ghazanfar
    A. Missarova
    N. Koulena
    N. Pierson
    J. A. Griffiths
    E. S. Bardot
    C.-H. L. Eng
    R. C. V. Tyser
    R. Argelaguet
    C. Guibentif
    S. Srinivas
    J. Briscoe
    B. D. Simons
    A.-K. Hadjantonakis
    B. Göttgens
    W. Reik
    J. Nichols
    L. Cai
    J. C. Marioni
    Nature Biotechnology, 2022, 40 : 74 - 85
  • [47] Benchmarking atlas-level data integration in single-cell genomics
    Luecken, Malte D.
    Buettner, M.
    Chaichoompu, K.
    Danese, A.
    Interlandi, M.
    Mueller, M. F.
    Strobl, D. C.
    Zappia, L.
    Dugas, M.
    Colome-Tatche, M.
    Theis, Fabian J.
    NATURE METHODS, 2022, 19 (01) : 41 - +
  • [48] SMILE: mutual information learning for integration of single-cell omics data
    Xu, Yang
    Das, Priyojit
    McCord, Rachel Patton
    BIOINFORMATICS, 2022, 38 (02) : 476 - 486
  • [49] CSS: cluster similarity spectrum integration of single-cell genomics data
    He, Zhisong
    Brazovskaja, Agnieska
    Ebert, Sebastian
    Camp, J. Gray
    Treutlein, Barbara
    GENOME BIOLOGY, 2020, 21 (01)
  • [50] Paired single-cell multi-omics data integration with Mowgli
    Huizing, Geert-Jan
    Deutschmann, Ina Maria
    Peyre, Gabriel
    Cantini, Laura
    NATURE COMMUNICATIONS, 2023, 14 (01)