HERMITE VARIATIONS OF THE FRACTIONAL BROWNIAN SHEET

被引:11
|
作者
Reveillac, Anthony [1 ]
Stauch, Michael [1 ]
Tudor, Ciprian A. [2 ]
机构
[1] Humboldt Univ, Inst Math, D-10099 Berlin, Germany
[2] Univ Lille 1, UFR Math, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
基金
奥地利科学基金会;
关键词
Limit theorems; Hermite variations; multiple stochastic integrals; Malliavin calculus; weak convergence; CENTRAL LIMIT-THEOREMS; POWER VARIATIONS; APPROXIMATION; FUNCTIONALS; CONVERGENCE;
D O I
10.1142/S0219493711500213
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We prove central and non-central limit theorems for the Hermite variations of the anisotropic fractional Brownian sheet W-alpha,W-beta with Hurst parameter (alpha, beta) is an element of (0, 1)(2). When 0 < alpha <= 1 - 1/2q or 0 < beta <= 1 - 1/2q a central limit theorem holds for the renormalized Hermite variations of order q >= 2, while for 1 - 1/2q < alpha, beta < 1 we prove that these variations satisfy a non-central limit theorem. In fact, they converge to a random variable which is the value of a two-parameter Hermite process at time (1, 1).
引用
收藏
页数:21
相关论文
共 50 条
  • [1] ON THE RATE OF CONVERGENCE IN NON-CENTRAL ASYMPTOTICS OF THE HERMITE VARIATIONS OF FRACTIONAL BROWNIAN SHEET
    Breton, Jean-Christophe
    PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2011, 31 (02): : 301 - 311
  • [2] Rate of Convergence for the Weighted Hermite Variations of the Fractional Brownian Motion
    Nicholas Ma
    David Nualart
    Journal of Theoretical Probability, 2020, 33 : 1919 - 1947
  • [3] Rate of Convergence for the Weighted Hermite Variations of the Fractional Brownian Motion
    Ma, Nicholas
    Nualart, David
    JOURNAL OF THEORETICAL PROBABILITY, 2020, 33 (04) : 1919 - 1947
  • [4] Functional limit theorems for generalized variations of the fractional Brownian sheet
    Pakkanen, Mikko S.
    Reveillac, Anthony
    BERNOULLI, 2016, 22 (03) : 1671 - 1708
  • [5] Error bounds on the non-normal approximation of Hermite power variations of fractional Brownian motion
    Breton, Jean-Christophe
    Nourdin, Ivan
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2008, 13 : 482 - 493
  • [6] ON THE LAMPERTI TRANSFORM OF THE FRACTIONAL BROWNIAN SHEET
    Khalil, Marwa
    Tudor, Ciprian
    Zili, Mounir
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (06) : 1466 - 1487
  • [7] On the Lamperti Transform of the Fractional Brownian Sheet
    Marwa Khalil
    Ciprian Tudor
    Mounir Zili
    Fractional Calculus and Applied Analysis, 2016, 19 : 1466 - 1487
  • [8] Singularity functions for fractional processes: application to the fractional Brownian sheet
    Cohen, S
    Guyon, X
    Perrin, O
    Pontier, M
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2006, 42 (02): : 187 - 205
  • [9] Stratonovich Calculus with Respect to Fractional Brownian Sheet
    Kim, Yoon Tae
    Park, Hyun Suk
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2009, 27 (05) : 962 - 983
  • [10] OPERATOR FRACTIONAL BROWNIAN SHEET AND MARTINGALE DIFFERENCES
    Dai, Hongshuai
    Shen, Guangjun
    Xia, Liangwen
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (01) : 9 - 23