Performance Analysis on Artificial Neural Network Based State of Charge Estimation for Electric Vehicles

被引:2
|
作者
Aaruththiran, Manoharan [1 ]
Begam, K. M. [1 ]
Aparow, Vimal Rau [1 ]
Sooriamoorthy, Denesh [2 ]
机构
[1] Univ Nottingham Malaysia, Dept Elect & Elect Engn, Semenyih, Malaysia
[2] Taylors Univ, Sch Comp Sci & Engn, Subang Jaya, Malaysia
关键词
State of Charge; Artificial Neural Networks; Electric Vehicles; LITHIUM-ION BATTERIES; SHORT-TERM-MEMORY; OF-CHARGE; HEALTH ESTIMATION; MODEL; LSTM;
D O I
10.1109/IoTaIS53735.2021.9628725
中图分类号
学科分类号
摘要
In the recent years, Artificial Neural Networks (ANNs) have gained wider interest in estimating the State of charge (SOC) of Li-ion batteries used in electric vehicles. As the ANN configurations proposed in recent literature were trained under different training parameters and datasets, a fair comparison cannot be made by directly referring to the prediction errors reported. Thus, the SOC prediction performance of the ANNs proposed in the recent years were investigated, by training with same training parameters and dataset (US06 vehicle dynamic profile from the Centre of Advanced Life Cycle Engineering). Results show that the testing dataset Mean Squared Error (MSE) for using only Convolutional Neural Network (CNN) is 3.140% whereas combining CNN with Long Short-Term Memory Networks (LSTM-RNN) is 1.820%, and CNN with Gate Recurrent Unit (GRU-RNN) is 1.819% MSE. Therefore, it is evident that in-cooperation of any form of recurrent architecture in an ANN configuration contributes to better SOC prediction. The results also highlight that inclusion of a bidirectional recurrent architecture such as Bidirectional LSTM-RNN (MSE: 0.927%) and attention mechanism such as the combination of LSTM-RNN with attention (MSE: 0.004%) contribute to better SOC prediction. Overall, the performance analysis conducted shows that there is a need in further research investigation on integrating different types of bidirectional recurrent architecture and attention mechanism with other ANNs and evaluate the SOC prediction performance as compared to previously proposed ANN configurations. Successful testing and implementation would contribute to increased battery life span and reduced maintenance costs, leading to increased usage of EVs.
引用
收藏
页码:176 / 182
页数:7
相关论文
共 50 条
  • [31] Enhanced lithium-ion battery state of charge estimation in electric vehicles using extended Kalman filter and deep neural network
    Djaballah, Younes
    Negadi, Karim
    Boudiaf, Mohamed
    INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (08) : 2864 - 2871
  • [32] Neural network estimation of battery pack SOC for electric vehicles
    College of Auto and Communication Engineering, Liaoning Institute of Technology, Jinzhou 121001, China
    Liaoning Gongcheng Jishu Daxue Xuebao (Ziran Kexue Ban), 2006, 2 (230-233):
  • [33] Electric Vehicle Charge Scheduling Using An Artificial Neural Network
    Morsalin, Sayidul
    Mahmud, Khizir
    Town, Graham
    2016 IEEE INNOVATIVE SMART GRID TECHNOLOGIES - ASIA (ISGT-ASIA), 2016, : 276 - 280
  • [34] A Method for the Combined Estimation of Battery State of Charge and State of Health Based on Artificial Neural Networks
    Bonfitto, Angelo
    ENERGIES, 2020, 13 (10)
  • [35] Sound Quality Estimation of Electric Vehicles Based on GA-BP Artificial Neural Networks
    Qian, Kun
    Hou, Zhichao
    Sun, Dengke
    APPLIED SCIENCES-BASEL, 2020, 10 (16):
  • [36] State of Charge Estimation of Lithium Batteries in Electric Vehicles Using IndRNN
    Venugopal, Prakash
    Vigneswaran, T.
    Reka, Sofana S.
    IETE JOURNAL OF RESEARCH, 2023, 69 (05) : 2886 - 2896
  • [37] Critical Review on the Battery State of Charge Estimation Methods for Electric Vehicles
    Xiong, Rui
    Cao, Jiayi
    Yu, Quanqing
    He, Hongwen
    Sun, Fengchun
    IEEE ACCESS, 2018, 6 : 1832 - 1843
  • [38] Robust State of Charge Estimation for Hybrid Electric Vehicles: Framework and Algorithms
    Yan, Jingyu
    Xu, Guoqing
    Qian, Huihuan
    Xu, Yangsheng
    ENERGIES, 2010, 3 (10): : 1654 - 1672
  • [39] Battery State-Of-Charge Estimation in Electric Vehicle Using Elman Neural Network Method
    Shi Qingsheng
    Zhang Chenghui
    Cui Naxin
    Zhang Xiaoping
    PROCEEDINGS OF THE 29TH CHINESE CONTROL CONFERENCE, 2010, : 5999 - 6003
  • [40] Artificial neural network in estimation of battery state-of-charge (SOC) with nonconventional input variables selected by correlation analysis
    Cai, CH
    Du, D
    Liu, ZY
    Zhang, H
    2002 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-4, PROCEEDINGS, 2002, : 1619 - 1625