Performance Analysis on Artificial Neural Network Based State of Charge Estimation for Electric Vehicles

被引:2
|
作者
Aaruththiran, Manoharan [1 ]
Begam, K. M. [1 ]
Aparow, Vimal Rau [1 ]
Sooriamoorthy, Denesh [2 ]
机构
[1] Univ Nottingham Malaysia, Dept Elect & Elect Engn, Semenyih, Malaysia
[2] Taylors Univ, Sch Comp Sci & Engn, Subang Jaya, Malaysia
关键词
State of Charge; Artificial Neural Networks; Electric Vehicles; LITHIUM-ION BATTERIES; SHORT-TERM-MEMORY; OF-CHARGE; HEALTH ESTIMATION; MODEL; LSTM;
D O I
10.1109/IoTaIS53735.2021.9628725
中图分类号
学科分类号
摘要
In the recent years, Artificial Neural Networks (ANNs) have gained wider interest in estimating the State of charge (SOC) of Li-ion batteries used in electric vehicles. As the ANN configurations proposed in recent literature were trained under different training parameters and datasets, a fair comparison cannot be made by directly referring to the prediction errors reported. Thus, the SOC prediction performance of the ANNs proposed in the recent years were investigated, by training with same training parameters and dataset (US06 vehicle dynamic profile from the Centre of Advanced Life Cycle Engineering). Results show that the testing dataset Mean Squared Error (MSE) for using only Convolutional Neural Network (CNN) is 3.140% whereas combining CNN with Long Short-Term Memory Networks (LSTM-RNN) is 1.820%, and CNN with Gate Recurrent Unit (GRU-RNN) is 1.819% MSE. Therefore, it is evident that in-cooperation of any form of recurrent architecture in an ANN configuration contributes to better SOC prediction. The results also highlight that inclusion of a bidirectional recurrent architecture such as Bidirectional LSTM-RNN (MSE: 0.927%) and attention mechanism such as the combination of LSTM-RNN with attention (MSE: 0.004%) contribute to better SOC prediction. Overall, the performance analysis conducted shows that there is a need in further research investigation on integrating different types of bidirectional recurrent architecture and attention mechanism with other ANNs and evaluate the SOC prediction performance as compared to previously proposed ANN configurations. Successful testing and implementation would contribute to increased battery life span and reduced maintenance costs, leading to increased usage of EVs.
引用
收藏
页码:176 / 182
页数:7
相关论文
共 50 条
  • [11] Estimation of the state of charge of Ni-MH battery pack based on artificial neural network
    Piao, Chang-Hao
    Fu, Wen-Li
    Wang, Jin
    Huang, Zhi-Yu
    Cho, Chongdu
    INTELEC 09 - 31ST INTERNATIONAL TELECOMMUNICATIONS ENERGY CONFERENCE, 2009, : 785 - +
  • [12] A Virtual Sensor for Electric Vehicles' State of Charge Estimation
    Gruosso, Giambattista
    Gajani, Giancarlo Storti
    Ruiz, Fredy
    Valladolid, Juan Diego
    Patino, Diego
    ELECTRONICS, 2020, 9 (02)
  • [13] A neural network based state-of-health estimation of lithium-ion battery in electric vehicles
    Yang, Duo
    Wang, Yujie
    Pan, Rui
    Chen, Ruiyang
    Chen, Zonghai
    8TH INTERNATIONAL CONFERENCE ON APPLIED ENERGY (ICAE2016), 2017, 105 : 2059 - 2064
  • [14] EV battery state of charge: Neural network based estimation
    Affanni, A
    Bellini, A
    Concari, C
    Franceschini, G
    Lorenzani, E
    Tassoni, C
    IEEE IEMDC'03: IEEE INTERNATIONAL ELECTRIC MACHINES AND DRIVES CONFERENCE, VOLS 1-3, 2003, : 684 - +
  • [15] Radial-based-function neural network based SOC estimation for electric vehicles
    Wuhan University, Wuhan 430072, China
    Diangong Jishu Xuebao, 2008, 5 (81-87):
  • [16] Joint State of Charge (SOC) and State of Health (SOH) Estimation for Lithium-Ion Batteries Packs of Electric Vehicles Based on NSSR-LSTM Neural Network
    Hu, Panpan
    Tang, W. F.
    Li, C. H.
    Mak, Shu-Lun
    Li, C. Y.
    Lee, C. C.
    ENERGIES, 2023, 16 (14)
  • [17] State of charge estimation in electric vehicles at various ambient temperatures
    Guo, Feng
    Hu, Guangdi
    Zhou, Pengkai
    Hu, Jianyao
    Sai, Yinghui
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2020, 44 (09) : 7357 - 7370
  • [18] State of charge estimation for electric vehicles using random forest
    Sulaiman, Mohd Herwan
    Mustaffa, Zuriani
    GREEN ENERGY AND INTELLIGENT TRANSPORTATION, 2024, 3 (05):
  • [19] Quantum Neural Network for State of Charge Estimation
    Mangunkusumo, Kevin Gausultan Hadith
    Lian, K. L.
    Wijaya, F. D.
    Chang, Y. -R.
    Lee, Y. D.
    Ho, Y. H.
    2014 6TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND ELECTRICAL ENGINEERING (ICITEE), 2014, : 331 - 335
  • [20] Robust State-of-Charge Estimation of Ultracapacitors for Electric Vehicles
    Zhang, Lei
    Hu, Xiaosong
    Su, Steven
    Dorrell, David G.
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), 2015, : 1296 - 1301