Performance Analysis on Artificial Neural Network Based State of Charge Estimation for Electric Vehicles

被引:2
|
作者
Aaruththiran, Manoharan [1 ]
Begam, K. M. [1 ]
Aparow, Vimal Rau [1 ]
Sooriamoorthy, Denesh [2 ]
机构
[1] Univ Nottingham Malaysia, Dept Elect & Elect Engn, Semenyih, Malaysia
[2] Taylors Univ, Sch Comp Sci & Engn, Subang Jaya, Malaysia
关键词
State of Charge; Artificial Neural Networks; Electric Vehicles; LITHIUM-ION BATTERIES; SHORT-TERM-MEMORY; OF-CHARGE; HEALTH ESTIMATION; MODEL; LSTM;
D O I
10.1109/IoTaIS53735.2021.9628725
中图分类号
学科分类号
摘要
In the recent years, Artificial Neural Networks (ANNs) have gained wider interest in estimating the State of charge (SOC) of Li-ion batteries used in electric vehicles. As the ANN configurations proposed in recent literature were trained under different training parameters and datasets, a fair comparison cannot be made by directly referring to the prediction errors reported. Thus, the SOC prediction performance of the ANNs proposed in the recent years were investigated, by training with same training parameters and dataset (US06 vehicle dynamic profile from the Centre of Advanced Life Cycle Engineering). Results show that the testing dataset Mean Squared Error (MSE) for using only Convolutional Neural Network (CNN) is 3.140% whereas combining CNN with Long Short-Term Memory Networks (LSTM-RNN) is 1.820%, and CNN with Gate Recurrent Unit (GRU-RNN) is 1.819% MSE. Therefore, it is evident that in-cooperation of any form of recurrent architecture in an ANN configuration contributes to better SOC prediction. The results also highlight that inclusion of a bidirectional recurrent architecture such as Bidirectional LSTM-RNN (MSE: 0.927%) and attention mechanism such as the combination of LSTM-RNN with attention (MSE: 0.004%) contribute to better SOC prediction. Overall, the performance analysis conducted shows that there is a need in further research investigation on integrating different types of bidirectional recurrent architecture and attention mechanism with other ANNs and evaluate the SOC prediction performance as compared to previously proposed ANN configurations. Successful testing and implementation would contribute to increased battery life span and reduced maintenance costs, leading to increased usage of EVs.
引用
收藏
页码:176 / 182
页数:7
相关论文
共 50 条
  • [1] The State of Charge Estimation for Rechargeable Batteries Based on Artificial Neural Network Techniques
    Ismail, Mohamed Mahmoud
    Hassan, M. A. Moustafa
    2013 INTERNATIONAL CONFERENCE ON CONTROL, DECISION AND INFORMATION TECHNOLOGIES (CODIT), 2013, : 733 - 739
  • [2] BATTERY STATE OF CHARGE ESTIMATION USING AN ARTIFICIAL NEURAL NETWORK
    Ismail, Mahmoud
    Dlyma, Rioch
    Elrakaybi, Ahmed
    Ahmed, Ryan
    Habibi, Saeid
    2017 IEEE TRANSPORTATION ELECTRIFICATION CONFERENCE AND EXPO (ITEC), 2017, : 342 - 349
  • [3] Estimation of state of charge of batteries for electric vehicles
    Wang, H. (why.69@163.com), 1600, Science and Engineering Research Support Society, 20 Virginia Court, Sandy Bay, Tasmania, Australia (06):
  • [4] Using Dynamic Neural Networks for Battery State of Charge Estimation in Electric Vehicles
    Jimenez-Bermejo, David
    Fraile-Ardanuy, Jesus
    Castano-Solis, Sandra
    Merino, Julia
    Alvaro-Hermana, Roberto
    9TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT 2018) / THE 8TH INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY INFORMATION TECHNOLOGY (SEIT-2018) / AFFILIATED WORKSHOPS, 2018, 130 : 533 - 540
  • [5] State-of-Charge Estimation of Lithium-Ion Battery for Electric Vehicles Using Deep Neural Network
    Premkumar, M.
    Sowmya, R.
    Sridhar, S.
    Kumar, C.
    Abbas, Mohamed
    Alqahtani, Malak S.
    Nisar, Kottakkaran Sooppy
    CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (03): : 6289 - 6306
  • [6] State-of-Charge Estimation of Li-Ion Battery in Electric Vehicles: A Deep Neural Network Approach
    How, Dickshon N. T.
    Hannan, Mahammad A.
    Lipu, Molla S. Hossain
    Sahari, Khairul S. M.
    Ker, Pin Jern
    Muttaqi, Kashem M.
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2020, 56 (05) : 5565 - 5574
  • [7] State-of-Charge Estimation of Li-ion Battery in Electric Vehicles: A Deep Neural Network Approach
    How, Dickson N. T.
    Hannan, M. A.
    Lipu, M. S. Hossain
    Sahari, K. S. M.
    Ker, P. J.
    Muttaqi, K. M.
    2019 IEEE INDUSTRY APPLICATIONS SOCIETY ANNUAL MEETING, 2019,
  • [8] State of charge estimation based on evolutionary neural network
    Cheng Bo
    Bai Zhifeng
    Cao Binggang
    ENERGY CONVERSION AND MANAGEMENT, 2008, 49 (10) : 2788 - 2794
  • [9] State of charge estimation and error analysis of lithium-ion batteries for electric vehicles using Kalman filter and deep neural network
    Rimsha
    Murawwat, Sadia
    Gulzar, Muhammad Majid
    Alzahrani, Ahmad
    Hafeez, Ghulam
    Khan, Farrukh Aslam
    Abed, Azher M.
    JOURNAL OF ENERGY STORAGE, 2023, 72
  • [10] Battery state of charge estimation using temporal convolutional network based on electric vehicles operating data
    Yang, Xueyan
    Hu, Jianyao
    Hu, Guangdi
    Guo, Xi
    JOURNAL OF ENERGY STORAGE, 2022, 55