Monotonicity formulas for the first eigenvalue of the weighted p-Laplacian under the Ricci-harmonic flow

被引:10
|
作者
Abolarinwa, Abimbola [1 ]
Adebimpe, Olukayode [1 ]
Bakare, Emmanuel A. [2 ]
机构
[1] Landmark Univ, Dept Phys Sci, Omu Aran, Nigeria
[2] Fed Univ Oye, Dept Math, Nigeria, Oye Ekiti, Nigeria
关键词
Ricci harmonic flow; Laplace-Beltrami operator; Eigenvalue; Monotonicity; Ricci solitons; GEOMETRIC OPERATORS; EVOLUTION;
D O I
10.1186/s13660-019-1961-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let p,phi be the weighted p-Laplacian defined on a smooth metric measure space. We study the evolution and monotonicity formulas for the first eigenvalue, 1=(p,phi), of p,phi under the Ricci-harmonic flow. We derive some monotonic quantities involving the first eigenvalue, and as a consequence, this shows that 1 is monotonically nondecreasing and almost everywhere differentiable along the flow existence.
引用
收藏
页数:16
相关论文
共 50 条