A PRIORI ESTIMATE FOR THE FIRST EIGENVALUE OF THE p-LAPLACIAN

被引:0
|
作者
Kajikiya, Ryuji [1 ]
机构
[1] Saga Univ, Fac Sci & Engn, Dept Math, Saga 8408502, Japan
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the first eigenvalue of the p-Laplacian under the Dirichlet boundary condition. For a convex domain, we give an a priori estimate for the first eigenvalue in terms of the radius d of the maximum ball contained in the domain. As a consequence, we prove that the first eigenvalue diverges to infinity as p -> infinity if the domain is convex and d <= 1. Moreover, we show that in the annulus domain a < vertical bar x vertical bar < b, the first eigenvalue diverges to infinity if b - a <= 2 and converges to zero if b - a > 2.
引用
收藏
页码:1011 / 1028
页数:18
相关论文
共 50 条
  • [1] Sharp estimate on the first eigenvalue of the p-Laplacian
    Valtorta, Daniele
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (13) : 4974 - 4994
  • [2] Eigenvalue estimate for the weighted p-Laplacian
    Lin Feng Wang
    [J]. Annali di Matematica Pura ed Applicata, 2012, 191 : 539 - 550
  • [3] Eigenvalue estimate for the weighted p-Laplacian
    Wang, Lin Feng
    [J]. ANNALI DI MATEMATICA PURA ED APPLICATA, 2012, 191 (03) : 539 - 550
  • [4] LOWER ESTIMATE OF THE FIRST EIGENVALUE OF p-LAPLACIAN VIA HARDY INEQUALITY
    Kutev, Nikolai
    Rangelov, Tsviatko
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2019, 72 (09): : 1167 - 1176
  • [5] LOWER ESTIMATE OF THE FIRST EIGENVALUE OF p-LAPLACIAN VIA HARDY INEQUALITY
    Fabricant, Alexander
    Kutev, Nikolai
    Rangelov, Tsviatko
    [J]. COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2015, 68 (05): : 561 - 568
  • [6] Boundedness of the first eigenvalue of the p-Laplacian
    Matei, AM
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (07) : 2183 - 2192
  • [7] The first eigenvalue of Finsler p-Laplacian
    Yin, Song-Ting
    He, Qun
    [J]. DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2014, 35 : 30 - 49
  • [8] ON THE FIRST EIGENVALUE OF THE NORMALIZED p-LAPLACIAN
    Crasta, Graziano
    Fragala, Ilaria
    Kawohl, Bernd
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 148 (02) : 577 - 590
  • [9] On the first eigenvalue of the p-Laplacian on Riemannian manifolds
    Seto, Shoo
    [J]. DIFFERENTIAL GEOMETRY AND GLOBAL ANALYSIS: IN HONOR OF TADASHI NAGANO, 2022, 777 : 199 - 209
  • [10] FIRST EIGENVALUE OF THE p-LAPLACIAN ON KAHLER MANIFOLDS
    Blacker, Casey
    Seto, Shoo
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (05) : 2197 - 2206