Effects of Random Domains on the Zero Hall Plateau in the Quantum Anomalous Hall Effect

被引:28
|
作者
Chen, Chui-Zhen [1 ,2 ,3 ]
Liu, Haiwen [4 ]
Xie, X. C. [5 ,6 ,7 ]
机构
[1] Soochow Univ, Inst Adv Study, Suzhou 215006, Peoples R China
[2] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Phys, Clear Water Bay, Hong Kong, Peoples R China
[4] Beijing Normal Univ, Ctr Adv Quantum Studies, Dept Phys, Beijing 100875, Peoples R China
[5] Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[6] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[7] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
关键词
METAL-INSULATOR-TRANSITION; SCALING THEORY; LOCALIZATION; ELECTRONS;
D O I
10.1103/PhysRevLett.122.026601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently, a zero Hall conductance plateau with random domains was experimentally observed in the quantum anomalous Hall (QAH) effect. We study the effects of random domains on the zero Hall plateau in QAH insulators. We find that the structure inversion symmetry determines the scaling property of the zero Hall plateau transition in the QAH systems. In the presence of structure inversion symmetry, the zero Hall plateau state shows a quantum-Hall-type critical point, originating from the two decoupled subsystems with opposite Chern numbers. However, the absence of structure inversion symmetry leads to a mixture between these two subsystems, gives rise to a line of critical points, and dramatically changes the scaling behavior. Hereinto, we predict a Berezinskii-Kosterlitz-Thouless-type transition during the Hall conductance plateau switching in the QAH insulators. Our results are instructive for both theoretic understanding of the zero Hall plateau transition and future transport experiments in the QAH insulators.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Quantum anomalous Hall effect in kagome ice
    Ishizuka, Hiroaki
    Motome, Yukitoshi
    PHYSICAL REVIEW B, 2013, 87 (08)
  • [42] 10 years of the quantum anomalous Hall effect
    Tokura, Yoshinori
    NATURE REVIEWS PHYSICS, 2023, 5 (08) : 439 - 439
  • [43] The quantum anomalous Hall effect in kagome lattices
    Zhang, Zhi-Yong
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (36)
  • [44] Thermodynamic anomalous Hall effect: The quantum regime
    Okulov, V. I.
    Pamyatnykh, E. A.
    Lonchakov, A. T.
    LOW TEMPERATURE PHYSICS, 2014, 40 (11) : 1032 - 1034
  • [45] Plateau-To-Plateau Phase Transition in Quantum Hall Effect
    Shrivastava, Keshav N.
    PROGRESS OF PHYSICS RESEARCH IN MALAYSIA, PERFIK2009, 2010, 1250 : 27 - 30
  • [46] Crossover of spin Hall to quantum anomalous Hall effect in PbC/MnSe heterostructures
    Chen, L.
    CONDENSED MATTER PHYSICS, 2020, 23 (01)
  • [47] Quantum anomalous Hall effect in graphene from Rashba and exchange effects
    Qiao, Zhenhua
    Yang, Shengyuan A.
    Feng, Wanxiang
    Tse, Wang-Kong
    Ding, Jun
    Yao, Yugui
    Wang, Jian
    Niu, Qian
    PHYSICAL REVIEW B, 2010, 82 (16):
  • [48] Anomalous Hall resistance in bilayer quantum Hall systems
    Ezawa, Z. F.
    Suzuki, S.
    Tsitsishvili, G.
    PHYSICAL REVIEW B, 2007, 76 (04)
  • [49] QUANTUM PERCOLATION AND PLATEAU TRANSITIONS IN THE QUANTUM HALL-EFFECT
    LEE, DH
    WANG, ZQ
    KIVELSON, S
    PHYSICAL REVIEW LETTERS, 1993, 70 (26) : 4130 - 4133
  • [50] Onset of an Insulating Zero-Plateau Quantum Hall State in Graphene
    Shimshoni, E.
    Fertig, H. A.
    Pai, G. Venketeswara
    PHYSICAL REVIEW LETTERS, 2009, 102 (20)