Effects of Random Domains on the Zero Hall Plateau in the Quantum Anomalous Hall Effect

被引:28
|
作者
Chen, Chui-Zhen [1 ,2 ,3 ]
Liu, Haiwen [4 ]
Xie, X. C. [5 ,6 ,7 ]
机构
[1] Soochow Univ, Inst Adv Study, Suzhou 215006, Peoples R China
[2] Soochow Univ, Sch Phys Sci & Technol, Suzhou 215006, Peoples R China
[3] Hong Kong Univ Sci & Technol, Dept Phys, Clear Water Bay, Hong Kong, Peoples R China
[4] Beijing Normal Univ, Ctr Adv Quantum Studies, Dept Phys, Beijing 100875, Peoples R China
[5] Peking Univ, Sch Phys, Int Ctr Quantum Mat, Beijing 100871, Peoples R China
[6] Collaborat Innovat Ctr Quantum Matter, Beijing 100871, Peoples R China
[7] Univ Chinese Acad Sci, CAS Ctr Excellence Topol Quantum Computat, Beijing 100190, Peoples R China
关键词
METAL-INSULATOR-TRANSITION; SCALING THEORY; LOCALIZATION; ELECTRONS;
D O I
10.1103/PhysRevLett.122.026601
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recently, a zero Hall conductance plateau with random domains was experimentally observed in the quantum anomalous Hall (QAH) effect. We study the effects of random domains on the zero Hall plateau in QAH insulators. We find that the structure inversion symmetry determines the scaling property of the zero Hall plateau transition in the QAH systems. In the presence of structure inversion symmetry, the zero Hall plateau state shows a quantum-Hall-type critical point, originating from the two decoupled subsystems with opposite Chern numbers. However, the absence of structure inversion symmetry leads to a mixture between these two subsystems, gives rise to a line of critical points, and dramatically changes the scaling behavior. Hereinto, we predict a Berezinskii-Kosterlitz-Thouless-type transition during the Hall conductance plateau switching in the QAH insulators. Our results are instructive for both theoretic understanding of the zero Hall plateau transition and future transport experiments in the QAH insulators.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] The Quantum Anomalous Hall Effect: Theory and Experiment
    Liu, Chao-Xing
    Zhang, Shou-Cheng
    Qi, Xiao-Liang
    ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 7, 2016, 7 : 301 - 321
  • [32] Quantum anomalous hall effect in collinear antiferromagnetism
    Guo, Peng-Jie
    Liu, Zheng-Xin
    Lu, Zhong-Yi
    NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
  • [33] Influence of interactions on the anomalous quantum Hall effect
    Zhang, C. X.
    Zubkov, M. A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (19)
  • [34] 10 years of the quantum anomalous Hall effect
    Yoshinori Tokura
    Nature Reviews Physics, 2023, 5 : 439 - 439
  • [35] Quantum anomalous hall effect in collinear antiferromagnetism
    Peng-Jie Guo
    Zheng-Xin Liu
    Zhong-Yi Lu
    npj Computational Materials, 9
  • [36] Progress and prospects in the quantum anomalous Hall effect
    Chi, Hang
    Moodera, Jagadeesh S.
    APL MATERIALS, 2022, 10 (09)
  • [37] Quantum Anomalous Hall Effect with Higher Plateaus
    Wang, Jing
    Lian, Biao
    Zhang, Haijun
    Xu, Yong
    Zhang, Shou-Cheng
    PHYSICAL REVIEW LETTERS, 2013, 111 (13)
  • [38] Unveiling the chirality of the quantum anomalous Hall effect
    Chen, Hongyu
    Jin, Yuanjun
    Yahyavi, Mohammad
    Belopolski, Ilya
    Shao, Sen
    Hou, Tao
    Wang, Naizhou
    Hsu, Chia-Hsiu
    Zhao, Yilin
    Yang, Bo
    Ma, Qiong
    Yin, Jia-Xin
    Xu, Su-Yang
    Gao, Wei-bo
    Chang, Guoqing
    PHYSICAL REVIEW B, 2024, 109 (12)
  • [39] Quantum anomalous Hall effect in real materials
    Zhang, Jiayong
    Zhao, Bao
    Zhou, Tong
    Yang, Zhongqin
    CHINESE PHYSICS B, 2016, 25 (11)
  • [40] Bulk dissipation in the quantum anomalous Hall effect
    Rodenbach, L. K.
    Rosen, I. T.
    Fox, E. J.
    Zhang, Peng
    Pan, Lei
    Wang, Kang L.
    Kastner, M. A.
    Goldhaber-Gordon, D.
    APL MATERIALS, 2021, 9 (08):