Bayesian sparse multiple regression for simultaneous rank reduction and variable selection

被引:8
|
作者
Chakraborty, Antik [1 ]
Bhattacharya, Anirban [1 ]
Mallick, Bani K. [1 ]
机构
[1] Texas A&M Univ, Dept Stat, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Dimension reduction; High dimension; Posterior concentration; Scalability; Shrinkage; Variable selection; SIMULTANEOUS DIMENSION REDUCTION; HORSESHOE ESTIMATOR; CONVERGENCE-RATES; LINEAR-MODELS; MULTIVARIATE; PRIORS;
D O I
10.1093/biomet/asz056
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We develop a Bayesian methodology aimed at simultaneously estimating low-rank and row-sparse matrices in a high-dimensional multiple-response linear regression model. We consider a carefully devised shrinkage prior on the matrix of regression coefficients which obviates the need to specify a prior on the rank, and shrinks the regression matrix towards low-rank and row-sparse structures. We provide theoretical support to the proposed methodology by proving minimax optimality of the posterior mean under the prediction risk in ultra-high-dimensional settings where the number of predictors can grow subexponentially relative to the sample size. A one-step post-processing scheme induced by group lasso penalties on the rows of the estimated coefficient matrix is proposed for variable selection, with default choices of tuning parameters. We additionally provide an estimate of the rank using a novel optimization function achieving dimension reduction in the covariate space. We exhibit the performance of the proposed methodology in an extensive simulation study and a real data example.
引用
收藏
页码:205 / 221
页数:17
相关论文
共 50 条
  • [1] Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection
    Chen, Lisha
    Huang, Jianhua Z.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) : 1533 - 1545
  • [2] Sparse reduced-rank regression for simultaneous rank and variable selection via manifold optimization
    Yoshikawa, Kohei
    Kawano, Shuichi
    [J]. COMPUTATIONAL STATISTICS, 2023, 38 (01) : 53 - 75
  • [3] Sparse reduced-rank regression for simultaneous rank and variable selection via manifold optimization
    Kohei Yoshikawa
    Shuichi Kawano
    [J]. Computational Statistics, 2023, 38 : 53 - 75
  • [4] Correction: Sparse reduced-rank regression for simultaneous rank and variable selection via manifold optimization
    Kohei Yoshikawa
    Shuichi Kawano
    [J]. Computational Statistics, 2023, 38 : 77 - 78
  • [5] Sparse partial least squares regression for simultaneous dimension reduction and variable selection
    Chun, Hyonho
    Keles, Suenduez
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2010, 72 : 3 - 25
  • [6] Sparse linear regression in unions of bases via Bayesian variable selection
    Fevotte, Cedric
    Godsill, Simon J.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (07) : 441 - 444
  • [7] Bayesian sparse reduced rank multivariate regression
    Goh, Gyuhyeong
    Dey, Dipak K.
    Chen, Kun
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 157 : 14 - 28
  • [8] Simultaneous Dimension Reduction and Variable Selection for Multinomial Logistic Regression
    Wen, Canhong
    Li, Zhenduo
    Dong, Ruipeng
    Ni, Yijin
    Pan, Wenliang
    [J]. INFORMS JOURNAL ON COMPUTING, 2023, 35 (05) : 1044 - 1060
  • [9] Variable selection for sparse logistic regression
    Zanhua Yin
    [J]. Metrika, 2020, 83 : 821 - 836
  • [10] Variable selection for sparse logistic regression
    Yin, Zanhua
    [J]. METRIKA, 2020, 83 (07) : 821 - 836