Sparse reduced-rank regression for simultaneous rank and variable selection via manifold optimization

被引:0
|
作者
Kohei Yoshikawa
Shuichi Kawano
机构
[1] The University of Electro-Communications,Graduate School of Informatics and Engineering
[2] NTT DATA Mathematical Systems Inc.,undefined
来源
Computational Statistics | 2023年 / 38卷
关键词
ADMM; Bayesian information criteria; Factor analysis; Stiefel manifold;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of constructing a reduced-rank regression model whose coefficient parameter is represented as a singular value decomposition with sparse singular vectors. The traditional estimation procedure for the coefficient parameter often fails when the true rank of the parameter is high. To overcome this issue, we develop an estimation algorithm with rank and variable selection via sparse regularization and manifold optimization, which enables us to obtain an accurate estimation of the coefficient parameter even if the true rank of the coefficient parameter is high. Using sparse regularization, we can also select an optimal value of the rank. We conduct Monte Carlo experiments and a real data analysis to illustrate the effectiveness of our proposed method.
引用
收藏
页码:53 / 75
页数:22
相关论文
共 50 条
  • [1] Sparse reduced-rank regression for simultaneous rank and variable selection via manifold optimization
    Yoshikawa, Kohei
    Kawano, Shuichi
    [J]. COMPUTATIONAL STATISTICS, 2023, 38 (01) : 53 - 75
  • [2] Correction: Sparse reduced-rank regression for simultaneous rank and variable selection via manifold optimization
    Kohei Yoshikawa
    Shuichi Kawano
    [J]. Computational Statistics, 2023, 38 : 77 - 78
  • [3] Sparse Reduced-Rank Regression for Simultaneous Dimension Reduction and Variable Selection
    Chen, Lisha
    Huang, Jianhua Z.
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) : 1533 - 1545
  • [4] SPARSE VARIABLE REDUCED RANK REGRESSION VIA STIEFEL OPTIMIZATION
    Ulfarsson, M. O.
    Solo, V.
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 3892 - 3895
  • [5] Variable Selection with Nonconcave Penalty Function on Reduced-Rank Regression
    Jung, Sang Yong
    Park, Chongsun
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2015, 22 (01) : 41 - 54
  • [6] Sparse reduced-rank regression with covariance estimation
    Lisha Chen
    Jianhua Z. Huang
    [J]. Statistics and Computing, 2016, 26 : 461 - 470
  • [7] Robust reduced-rank modeling via rank regression
    Zhao, Weihua
    Lian, Heng
    Ma, Shujie
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2017, 180 : 1 - 12
  • [8] Fast Algorithms for Sparse Reduced-Rank Regression
    Dubois, Benjamin
    Delmas, Jean-Francois
    Obozinski, Guillaume
    [J]. 22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [9] Sparse reduced-rank regression with covariance estimation
    Chen, Lisha
    Huang, Jianhua Z.
    [J]. STATISTICS AND COMPUTING, 2016, 26 (1-2) : 461 - 470
  • [10] Rank estimation in reduced-rank regression
    Bura, E
    Cook, RD
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2003, 87 (01) : 159 - 176