Sparse reduced-rank regression for simultaneous rank and variable selection via manifold optimization

被引:0
|
作者
Kohei Yoshikawa
Shuichi Kawano
机构
[1] The University of Electro-Communications,Graduate School of Informatics and Engineering
[2] NTT DATA Mathematical Systems Inc.,undefined
来源
Computational Statistics | 2023年 / 38卷
关键词
ADMM; Bayesian information criteria; Factor analysis; Stiefel manifold;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the problem of constructing a reduced-rank regression model whose coefficient parameter is represented as a singular value decomposition with sparse singular vectors. The traditional estimation procedure for the coefficient parameter often fails when the true rank of the parameter is high. To overcome this issue, we develop an estimation algorithm with rank and variable selection via sparse regularization and manifold optimization, which enables us to obtain an accurate estimation of the coefficient parameter even if the true rank of the coefficient parameter is high. Using sparse regularization, we can also select an optimal value of the rank. We conduct Monte Carlo experiments and a real data analysis to illustrate the effectiveness of our proposed method.
引用
收藏
页码:53 / 75
页数:22
相关论文
共 50 条
  • [21] BIPLOTS IN REDUCED-RANK REGRESSION
    TERBRAAK, CJF
    LOOMAN, CWN
    [J]. BIOMETRICAL JOURNAL, 1994, 36 (08) : 983 - 1003
  • [22] Envelopes and reduced-rank regression
    Cook, R. Dennis
    Forzani, Liliana
    Zhang, Xin
    [J]. BIOMETRIKA, 2015, 102 (02) : 439 - 456
  • [23] Robust reduced-rank regression
    She, Y.
    Chen, K.
    [J]. BIOMETRIKA, 2017, 104 (03) : 633 - 647
  • [24] A fully Bayesian approach to sparse reduced-rank multivariate regression
    Yang, Dunfu
    Goh, Gyuhyeong
    Wang, Haiyan
    [J]. STATISTICAL MODELLING, 2022, 22 (03) : 199 - 220
  • [25] MULTIPLE QUANTILE MODELING VIA REDUCED-RANK REGRESSION
    Lian, Heng
    Zhao, Weihua
    Ma, Yanyuan
    [J]. STATISTICA SINICA, 2019, 29 (03) : 1439 - 1464
  • [26] Sparse reduced-rank regression for multivariate varying-coefficient models
    Zhang, Fode
    Li, Rui
    Lian, Heng
    Bandyopadhyay, Dipankar
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2021, 91 (04) : 752 - 767
  • [27] Sparse reduced-rank regression for exploratory visualisation of paired multivariate data
    Kobak, Dmitry
    Bernaerts, Yves
    Weis, Marissa A.
    Scala, Federico
    Tolias, Andreas
    Berens, Philipp
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2021, 70 (04) : 980 - 1000
  • [28] ADAPTIVE ESTIMATION IN TWO-WAY SPARSE REDUCED-RANK REGRESSION
    Ma, Zhuang
    Ma, Zongming
    Sun, Tingni
    [J]. STATISTICA SINICA, 2020, 30 (04) : 2179 - 2201
  • [29] The APT model as reduced-rank regression
    Bekker, P
    Dobbelstein, P
    Wansbeek, T
    [J]. JOURNAL OF BUSINESS & ECONOMIC STATISTICS, 1996, 14 (02) : 199 - 202
  • [30] Online Robust Reduced-Rank Regression
    Yang, Yangzhuoran Fin
    Zhao, Ziping
    [J]. 2020 IEEE 11TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2020,