Enhanced ion acceleration using the high-energy petawatt PETAL laser

被引:24
|
作者
Raffestin, D. [1 ,2 ]
Lecherbourg, L. [3 ]
Lantuejoul, I. [3 ]
Vauzour, B. [3 ]
Masson-Laborde, P. E. [3 ,4 ]
Davoine, X. [3 ,4 ]
Blanchot, N. [1 ]
Dubois, J. L. [1 ,2 ]
Vaisseau, X. [3 ]
d'Humieres, E. [2 ]
Gremillet, L. [3 ,4 ]
Duval, A. [3 ]
Reverdin, Ch. [3 ]
Rosse, B. [3 ]
Boutoux, G. [3 ]
Ducret, J. E. [5 ]
Rousseaux, Ch. [3 ]
Tikhonchuk, V. [2 ,6 ]
Batani, D. [2 ]
机构
[1] CEA, CESTA, CESTA, F-33116 Le Barp, France
[2] Univ Bordeaux, CNRS CEA, UMR 5107, Ctr Laser Intenses & Applicat, F-33405 Talence, France
[3] CEA, DIF, DAM, F-91297 Arpajon, France
[4] Univ Paris Saclay, CEA, LMCE, F-91680 Bruyeres Le Chatel, France
[5] CEA, GANIL, IRFU, DRF, F-14000 Caen, France
[6] Beamlines Res Ctr, ELI, Dolni Brezany 25241, Czech Republic
关键词
ELECTRON; GENERATION; KILOJOULE; FACILITY; BEAMS;
D O I
10.1063/5.0046679
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The high-energy petawatt PETAL laser system was commissioned at CEA's Laser Megajoule facility during the 2017-2018 period. This paper reports in detail on the first experimental results obtained at PETAL on energetic particle and photon generation from solid foil targets, with special emphasis on proton acceleration. Despite a moderately relativistic (<10(19) W/cm(2)) laser intensity, proton energies as high as 51 MeV have been measured significantly above those expected from preliminary numerical simulations using idealized interaction conditions. Multidimensional hydrodynamic and kinetic simulations, taking into account the actual laser parameters, show the importance of the energetic electron production in the extended low-density preplasma created by the laser pedestal. This hot-electron generation occurs through two main pathways: (i) stimulated backscattering of the incoming laser light, triggering stochastic electron heating in the resulting counterpropagating laser beams; (ii) laser filamentation, leading to local intensifications of the laser field and plasma channeling, both of which tend to boost the electron acceleration. Moreover, owing to the large (similar to 100 mu m) waist and picosecond duration of the PETAL beam, the hot electrons can sustain a high electrostatic field at the target rear side for an extended period, thus enabling efficient target normal sheath acceleration of the rear-side protons. The particle distributions predicted by our numerical simulations are consistent with the measurements. (C) 2021 Author(s).
引用
下载
收藏
页数:18
相关论文
共 50 条
  • [1] Enhanced ion acceleration using the high-energy petawatt PETAL laser
    DRaffestin
    LLecherbourg
    ILantujoul
    BVauzour
    PEMassonLaborde
    XDavoine
    NBlanchot
    JLDubois
    XVaisseau
    EdHumires
    LGremillet
    ADuval
    ChReverdin
    BRosse
    GBoutoux
    JEDucret
    ChRousseaux
    VTikhonchuk
    DBatani
    Matter and Radiation at Extremes, 2021, 6 (05) : 66 - 83
  • [2] PHELIX -: a Petawatt High-Energy Laser for Heavy Ion Experiments
    Roth, M
    Becker-de-Mos, B
    Bock, R
    Borneis, S
    Brandt, H
    Bruske, C
    Caird, J
    Dewald, E
    Haefner, C
    Hoffmann, DHH
    Kalachnikov, MP
    Kluge, HJ
    Krausz, F
    Kühl, T
    Logan, G
    Marx, D
    Neumayer, P
    Nickles, PV
    Perry, MP
    Poppensieker, K
    Reinhard, I
    Sander, W
    Sauerbrey, R
    Tauschwitz, A
    Will, I
    ECLIM 2000: 26TH EUROPEAN CONFERENCE ON LASER INTERACTION WITH MATTER, 2001, 4424 : 78 - 85
  • [3] Numerical simulations of generation of high-energy ion beams driven by a petawatt femtosecond laser
    Domanski, Jaroslaw
    Badziak, Jan
    Jablonski, Slawomir
    NUKLEONIKA, 2015, 60 (02) : 229 - 232
  • [4] Selective deuterium ion acceleration using the Vulcan petawatt laser
    Krygier, A. G.
    Morrison, J. T.
    Kar, S.
    Ahmed, H.
    Alejo, A.
    Clarke, R.
    Fuchs, J.
    Green, A.
    Jung, D.
    Kleinschmidt, A.
    Najmudin, Z.
    Nakamura, H.
    Norreys, P.
    Notley, M.
    Oliver, M.
    Roth, M.
    Vassura, L.
    Zepf, M.
    Borghesi, M.
    Freeman, R. R.
    PHYSICS OF PLASMAS, 2015, 22 (05)
  • [5] Enhanced laser absorption and ion acceleration by boron nitride nanotube targets and high-energy PW laser pulses
    Tosca, M.
    Morace, A.
    Schollmeier, M.
    Steinke, S.
    Shirvanyan, V.
    Arikawa, Y.
    Giuffrida, L.
    Margarone, D.
    Pleskunov, P.
    Choukourov, A.
    Whitney, R. R.
    Scammell, L. R.
    Korn, G.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [6] Chromatism compensation of the PETAL multipetawatt high-energy laser
    Nauport, J.
    Blanchot, N.
    Rouyer, C.
    Sauteret, C.
    APPLIED OPTICS, 2007, 46 (09) : 1568 - 1574
  • [7] OMEGA EP high-energy petawatt laser: Progress and prospects
    Maywar, D. N.
    Kelly, J. H.
    Waxer, L. J.
    Morse, S. F. B.
    Begishev, I. A.
    Bromage, J.
    Dorrer, C.
    Edwards, J. L.
    Folnsbee, L.
    Guardalben, M. J.
    Jacobs, S. D.
    Jungquist, R.
    Kessler, T. J.
    Kidder, R. W.
    Kruschwitz, B. E.
    Loucks, S. J.
    Marciante, J. R.
    McCrory, R. L.
    Meyerhofer, D. D.
    Okishev, A. V.
    Oliver, J. B.
    Pien, G.
    Qiao, J.
    Puth, J.
    Rigatti, A. L.
    Schmid, A. W.
    Shoup, M. J., III
    Stoeckl, C.
    Thorp, K. A.
    Zuegel, J. D.
    5TH INTERNATIONAL CONFERENCE ON INERTIAL FUSION SCIENCES AND APPLICATIONS (IFSA2007), 2008, 112
  • [8] High-flux high-energy ion beam production from stable collisionless shock acceleration by intense petawatt-picosecond laser pulses
    He, H.
    Qiao, B.
    Shen, X. F.
    Yao, W. P.
    Xie, Y.
    Zhou, C. T.
    He, X. T.
    Zhu, S. P.
    Pei, W. B.
    Fu, S. Z.
    NEW JOURNAL OF PHYSICS, 2019, 21 (03):
  • [9] High-energy physics - LULI laser aims for petawatt output
    Roux, R
    LASER FOCUS WORLD, 2000, 36 (01): : 26 - +
  • [10] PRODUCTION HIGH-ENERGY ION IMPLANTERS USING RADIOFREQUENCY ACCELERATION
    GLAVISH, HF
    BERNHARDT, D
    BOISSEAU, P
    LIBBY, B
    SIMCOX, G
    DENHOLM, AS
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 1987, 21 (2-4): : 264 - 269