Selective deuterium ion acceleration using the Vulcan petawatt laser

被引:19
|
作者
Krygier, A. G. [1 ,2 ]
Morrison, J. T. [3 ]
Kar, S. [4 ]
Ahmed, H. [4 ]
Alejo, A. [4 ]
Clarke, R. [5 ]
Fuchs, J. [1 ]
Green, A. [4 ]
Jung, D. [4 ]
Kleinschmidt, A. [6 ]
Najmudin, Z. [7 ]
Nakamura, H. [7 ]
Norreys, P. [5 ,8 ]
Notley, M. [5 ]
Oliver, M. [8 ]
Roth, M. [6 ]
Vassura, L. [1 ]
Zepf, M. [4 ,9 ]
Borghesi, M. [4 ,10 ]
Freeman, R. R. [2 ]
机构
[1] Ecole Polytech, Lab Utilisat Lasers Intenses, F-91128 Palasiseau, France
[2] Ohio State Univ, Dept Phys, Columbus, OH 43210 USA
[3] Air Force Res Lab, Prop Syst Directorate, Wright Patterson AFB, OH 45433 USA
[4] Queens Univ Belfast, Sch Math & Phys, Ctr Plasma Phys, Belfast BT7 1NN, Antrim, North Ireland
[5] Rutherford Appleton Lab, Cent Laser Facil, Didcot OX11 0QX, Oxon, England
[6] Tech Univ Darmstadt, Inst Kernphys, D-64289 Darmstadt, Germany
[7] Univ London Imperial Coll Sci Technol & Med, Dept Phys, Blackett Lab, John Adams Inst, London SW7 2AZ, England
[8] Univ Oxford, Dept Phys, Oxford OX1 3PU, England
[9] Helmholtz Inst Jena, D-07743 Jena, Germany
[10] ASCR, ELI Beamlines Project, Inst Phys, Prague 18221, Czech Republic
基金
英国工程与自然科学研究理事会; 美国能源部;
关键词
GENERATION; DRIVEN;
D O I
10.1063/1.4919618
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We report on the successful demonstration of selective acceleration of deuterium ions by target-normal sheath acceleration (TNSA) with a high-energy petawatt laser. TNSA typically produces a multi-species ion beam that originates from the intrinsic hydrocarbon and water vapor contaminants on the target surface. Using the method first developed by Morrison et al. [Phys. Plasmas 19, 030707 (2012)], an ion beam with > 99% deuterium ions and peak energy 14 MeV/nucleon is produced with a 200 J, 700 fs, > 10(20)W/cm(2) laser pulse by cryogenically freezing heavy water (D2O) vapor onto the rear surface of the target prior to the shot. Within the range of our detectors (0 degrees-8.5 degrees), we find laser-to-deuterium-ion energy conversion efficiency of 4.3% above 0.7 MeV/nucleon while a conservative estimate of the total beam gives a conversion efficiency of 9.4%. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Enhanced ion acceleration using the high-energy petawatt PETAL laser
    Raffestin, D.
    Lecherbourg, L.
    Lantuejoul, I.
    Vauzour, B.
    Masson-Laborde, P. E.
    Davoine, X.
    Blanchot, N.
    Dubois, J. L.
    Vaisseau, X.
    d'Humieres, E.
    Gremillet, L.
    Duval, A.
    Reverdin, Ch.
    Rosse, B.
    Boutoux, G.
    Ducret, J. E.
    Rousseaux, Ch.
    Tikhonchuk, V.
    Batani, D.
    MATTER AND RADIATION AT EXTREMES, 2021, 6 (05)
  • [2] Enhanced ion acceleration using the high-energy petawatt PETAL laser
    DRaffestin
    LLecherbourg
    ILantujoul
    BVauzour
    PEMassonLaborde
    XDavoine
    NBlanchot
    JLDubois
    XVaisseau
    EdHumires
    LGremillet
    ADuval
    ChReverdin
    BRosse
    GBoutoux
    JEDucret
    ChRousseaux
    VTikhonchuk
    DBatani
    Matter and Radiation at Extremes, 2021, 6 (05) : 66 - 83
  • [3] Simulations of radiation pressure ion acceleration with the VEGA Petawatt laser
    Stockhausen, Luca C.
    Torres, Ricardo
    Conejero Jarque, Enrique
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 830 : 550 - 555
  • [4] A target inserter for the Vulcan Petawatt Laser interaction chamber
    Heathcote, Robert
    Clarke, Robert J.
    TARGET DIAGNOSTICS PHYSICS AND ENGINEERING FOR INERTIAL CONFINEMENT FUSION V, 2016, 9966
  • [5] Online charge measurement for petawatt laser-driven ion acceleration
    Geulig, Laura D. D.
    Obst-Huebl, Lieselotte
    Nakamura, Kei
    Bin, Jianhui
    Ji, Qing
    Steinke, Sven
    Snijders, Antoine M. M.
    Mao, Jian-Hua
    Blakely, Eleanor A. A.
    Gonsalves, Anthony J. J.
    Bulanov, Stepan
    van Tilborg, Jeroen
    Schroeder, Carl B. B.
    Geddes, Cameron G. R.
    Esarey, Eric
    Roth, Markus
    Schenkel, Thomas
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (10):
  • [6] Simulations of ion acceleration from ultrathin targets with the VEGA Petawatt laser
    Stockhausen, Luca C.
    Torres, Ricardo
    Jarque, Enrique Conjero
    LASER ACCELERATION OF ELECTRONS, PROTONS, AND IONS III; AND MEDICAL APPLICATIONS OF LASER-GENERATED BEAMS OF PARTICLES III, 2015, 9514
  • [7] Laser wakefield acceleration in the Petawatt regime
    Mendonca, J. T.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2009, 51 (02)
  • [8] Acceleration of high charge ion beams with achromatic divergence by petawatt laser pulses
    Steinke, S.
    Bin, J. H.
    Park, J.
    Ji, Q.
    Nakamura, K.
    Gonsalves, A. J.
    Bulanov, S. S.
    Thevenet, M.
    Toth, C.
    Vay, J-L
    Schroeder, C. B.
    Geddes, C. G. R.
    Esarey, E.
    Schenkel, T.
    Leemans, W. P.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2020, 23 (02):
  • [9] Laser-Ion Acceleration from Transparent Overdense Plasmas at the Texas Petawatt
    Pomerantz, I.
    Blakeney, J.
    Dyer, G.
    Fuller, L.
    Gaul, E.
    Gautier, D. C.
    Jung, D.
    Meadows, A. R.
    Shah, R.
    Wang, C.
    Fernandez, J. C.
    Ditmire, T.
    Hegelich, B. M.
    LASER ACCELERATION OF ELECTRONS, PROTONS, AND IONS II; AND MEDICAL APPLICATIONS OF LASER-GENERATED BEAMS OF PARTICLES II; AND HARNESSING RELATIVISTIC PLASMA WAVES III, 2013, 8779
  • [10] Optical probing of high-intensity laser interactions with underdense plasmas using the VULCAN petawatt laser facility
    Nilson, P. M.
    Mangles, S. P. D.
    Willingale, L.
    Kaluza, M. C.
    Thomas, A. G. R.
    Najmudin, Z.
    Evans, R. G.
    Dangor, A. E.
    Krushelnick, K.
    Tatarakis, M.
    Clarke, R. J.
    Lancaster, K. L.
    Hernandez-Gomez, C.
    Karsch, S.
    Schreiber, J.
    JOURNAL DE PHYSIQUE IV, 2006, 133 : 543 - 547