Enhanced ion acceleration using the high-energy petawatt PETAL laser

被引:24
|
作者
Raffestin, D. [1 ,2 ]
Lecherbourg, L. [3 ]
Lantuejoul, I. [3 ]
Vauzour, B. [3 ]
Masson-Laborde, P. E. [3 ,4 ]
Davoine, X. [3 ,4 ]
Blanchot, N. [1 ]
Dubois, J. L. [1 ,2 ]
Vaisseau, X. [3 ]
d'Humieres, E. [2 ]
Gremillet, L. [3 ,4 ]
Duval, A. [3 ]
Reverdin, Ch. [3 ]
Rosse, B. [3 ]
Boutoux, G. [3 ]
Ducret, J. E. [5 ]
Rousseaux, Ch. [3 ]
Tikhonchuk, V. [2 ,6 ]
Batani, D. [2 ]
机构
[1] CEA, CESTA, CESTA, F-33116 Le Barp, France
[2] Univ Bordeaux, CNRS CEA, UMR 5107, Ctr Laser Intenses & Applicat, F-33405 Talence, France
[3] CEA, DIF, DAM, F-91297 Arpajon, France
[4] Univ Paris Saclay, CEA, LMCE, F-91680 Bruyeres Le Chatel, France
[5] CEA, GANIL, IRFU, DRF, F-14000 Caen, France
[6] Beamlines Res Ctr, ELI, Dolni Brezany 25241, Czech Republic
关键词
ELECTRON; GENERATION; KILOJOULE; FACILITY; BEAMS;
D O I
10.1063/5.0046679
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The high-energy petawatt PETAL laser system was commissioned at CEA's Laser Megajoule facility during the 2017-2018 period. This paper reports in detail on the first experimental results obtained at PETAL on energetic particle and photon generation from solid foil targets, with special emphasis on proton acceleration. Despite a moderately relativistic (<10(19) W/cm(2)) laser intensity, proton energies as high as 51 MeV have been measured significantly above those expected from preliminary numerical simulations using idealized interaction conditions. Multidimensional hydrodynamic and kinetic simulations, taking into account the actual laser parameters, show the importance of the energetic electron production in the extended low-density preplasma created by the laser pedestal. This hot-electron generation occurs through two main pathways: (i) stimulated backscattering of the incoming laser light, triggering stochastic electron heating in the resulting counterpropagating laser beams; (ii) laser filamentation, leading to local intensifications of the laser field and plasma channeling, both of which tend to boost the electron acceleration. Moreover, owing to the large (similar to 100 mu m) waist and picosecond duration of the PETAL beam, the hot electrons can sustain a high electrostatic field at the target rear side for an extended period, thus enabling efficient target normal sheath acceleration of the rear-side protons. The particle distributions predicted by our numerical simulations are consistent with the measurements. (C) 2021 Author(s).
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Generation of high-energy ion bunches via laser-induced cavity pressure acceleration at ultra-high laser intensities
    Jablonski, S.
    Badziak, J.
    Raczka, P.
    LASER AND PARTICLE BEAMS, 2014, 32 (01) : 129 - 135
  • [32] Laser-Ion Acceleration from Transparent Overdense Plasmas at the Texas Petawatt
    Pomerantz, I.
    Blakeney, J.
    Dyer, G.
    Fuller, L.
    Gaul, E.
    Gautier, D. C.
    Jung, D.
    Meadows, A. R.
    Shah, R.
    Wang, C.
    Fernandez, J. C.
    Ditmire, T.
    Hegelich, B. M.
    LASER ACCELERATION OF ELECTRONS, PROTONS, AND IONS II; AND MEDICAL APPLICATIONS OF LASER-GENERATED BEAMS OF PARTICLES II; AND HARNESSING RELATIVISTIC PLASMA WAVES III, 2013, 8779
  • [33] High-energy ion generation by short laser pulses
    Maksimchuk, A
    Flippo, K
    Krause, H
    Mourou, G
    Nemoto, K
    Shultz, D
    Umstadter, D
    Vane, R
    Bychenkov, VY
    Dudnikova, GI
    Kovalev, VF
    Mima, K
    Novikov, VN
    Sentoku, Y
    Tolokonnikov, SV
    PLASMA PHYSICS REPORTS, 2004, 30 (06) : 473 - 495
  • [35] High-energy ion generation by short laser pulses
    A. Maksimchuk
    K. Flippo
    H. Krause
    G. Mourou
    K. Nemoto
    D. Shultz
    D. Umstadter
    R. Vane
    V. Yu. Bychenkov
    G. I. Dudnikova
    V. F. Kovalev
    K. Mima
    V. N. Novikov
    Y. Sentoku
    S. V. Tolokonnikov
    Plasma Physics Reports, 2004, 30 : 473 - 495
  • [36] Design and demonstration of a high-energy booster amplifier for a high-repetition rate petawatt class laser system
    Ple, Fabien
    Pittman, Moana
    Jamelot, Gerard
    Chambaret, Jean-Paul
    OPTICS LETTERS, 2007, 32 (03) : 238 - 240
  • [37] Experimental progress of laser-driven high-energy proton acceleration and new acceleration schemes
    Ma Wen-Jun
    Liu Zhi-Peng
    Wang Peng-Jie
    Zhao Jia-Rui
    Yan Xue-Qing
    ACTA PHYSICA SINICA, 2021, 70 (08)
  • [38] High repetition rate PetaWatt Titanium Sapphire laser system for laser plasma acceleration
    Lureau, F.
    Laux, S.
    Casagrande, O.
    Radier, C.
    Chalus, O.
    Caradec, F.
    Derycke, C.
    Jougla, P.
    Brousse, G.
    Simon-Boisson, C.
    2013 CONFERENCE ON LASERS AND ELECTRO-OPTICS EUROPE AND INTERNATIONAL QUANTUM ELECTRONICS CONFERENCE (CLEO EUROPE/IQEC), 2013,
  • [39] Research in plasma physics and particle acceleration using the PEARL petawatt laser
    Soloviev, A. A.
    Burdonov, K. F.
    Ginzburg, V. N.
    Glyavin, M. Yu
    Zemskov, R. S.
    Kotov, A., V
    Kochetkov, A. A.
    Kuzmin, A. A.
    Murzanev, A. A.
    Mukhin, I. B.
    Perevalov, S. E.
    Pikuz, S. A.
    Starodubtsev, M., V
    Stepanov, A. N.
    Fuchs, J.
    Shaykin, I. A.
    Shaykin, A. A.
    Yakovlev, I., V
    Khazanov, E. A.
    PHYSICS-USPEKHI, 2024, 67 (03) : 293 - 313
  • [40] A laser wakefield acceleration facility using SG-II petawatt laser system
    Liang, Xiao
    Yi, Youjian
    Li, Song
    Zhu, Ping
    Xie, Xinglong
    Liu, Huiya
    Mu, GuangJin
    Liu, ZhiGang
    Guo, Ailin
    Kang, Jun
    Yang, Qingwei
    Zhu, Haidong
    Gao, Qi
    Sun, Meizhi
    Lu, Haiyang
    Ma, Yanyun
    Mondal, Sudipta
    Papp, Daniel
    Majorosi, Szilard
    Lecz, Zsolt
    Andreev, Alexander
    Kahaly, Subhendu
    Kamperidis, Christos
    Hafz, Nasr A. M.
    Zhu, Jianqiang
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2022, 93 (03):