A lower bound for the spectrum of N-particle Hamiltonians

被引:2
|
作者
O'Carroll, M [1 ]
机构
[1] Univ Fed Minas Gerais, ICEx, Dept Fis, BR-30123970 Belo Horizonte, MG, Brazil
来源
关键词
D O I
10.1088/0305-4470/34/1/101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the spectrum of an N-particle Hamiltonian H = Sigma (i) (1/2m(i)) Delta ((r) over right arrowi) + Sigma (i<j) V-ij(<(r)over right arrow> - (r) over right arrow (ji)) with translation-invariant pair interactions V-ij. H acts in L-2(R-3N). Letting sigma denote the spectrum we obtain the lower bound inf sigma (H) greater than or equal to Sigma (i<j) inf <sigma> (h(ij)') where h(ij)' = -(1/2 mu (ij)') Delta ((r) over right arrow) + V-ij((r) over right arrow), 1 less than or equal to i < j <less than or equal to> N is the single-pat-tide relative coordinate Hamiltonian with reduced mass mu (ij)' = (N - 1)mu (ij), mu (ij) = m(i)m(j) (m(i) + m(j))-1 acting in L-2(R-3). In particular, if sigma (h(ij)') subset of [0, infinity) (for example, weak pair interactions) for all i, j then H has no negative energy spectrum. For example, if each V-ij((r) over right arrow) is in L-3/2(R-3) and sufficiently small it is known that sigma (h(ij)') subset of [0, infinity).
引用
收藏
页码:L1 / L3
页数:3
相关论文
共 50 条
  • [31] REDUCTION OF N-PARTICLE VARIATIONAL PROBLEM
    GARROD, C
    PERCUS, JK
    JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (12) : 1756 - &
  • [32] EXACT SOLUTION OF AN N-PARTICLE SYSTEM
    THOMPSON, KW
    NUCLEAR PHYSICS A, 1967, A 99 (03) : 421 - &
  • [33] n-Particle Quantum Statistics on Graphs
    Harrison, J. M.
    Keating, J. P.
    Robbins, J. M.
    Sawicki, A.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 330 (03) : 1293 - 1326
  • [34] VIRTUAL LEVELS OF N-PARTICLE SYSTEMS
    ZHISLIN, GM
    THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 68 (02) : 815 - 823
  • [35] N-particle Bogoliubov vacuum state
    Dziarmaga, J.
    Sacha, K.
    LASER PHYSICS, 2006, 16 (07) : 1134 - 1139
  • [36] Generally covariant N-particle dynamics
    Miller, Tomasz
    Eckstein, Michal
    Horodecki, Pawel
    Horodecki, Ryszard
    JOURNAL OF GEOMETRY AND PHYSICS, 2021, 160
  • [37] Separable N-particle Hookean models
    Karwowski, Jacek
    Szewc, Kamil
    SYMMETRY AND STRUCTURAL PROPERTIES OF CONDENSED MATTER, 2010, 213
  • [38] Stability of n-particle pseudorelativistic systems
    Zhislin, G. M.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2007, 152 (03) : 1322 - 1330
  • [39] NECESSITY OF N-PARTICLE PRODUCTION AMPLITUDES
    CHEUNG, FFK
    PHYSICS LETTERS B, 1968, B 27 (05) : 302 - &
  • [40] N-PARTICLE NONINTERACTING GREENS FUNCTION
    COOPER, WG
    KOURI, DJ
    JOURNAL OF MATHEMATICAL PHYSICS, 1972, 13 (06) : 809 - &