Stability of n-particle pseudorelativistic systems

被引:3
|
作者
Zhislin, G. M. [1 ]
机构
[1] Inst Radiophys Res, Nizhnii Novgorod, Russia
基金
俄罗斯基础研究基金会;
关键词
pseudorelativistic operator; many-particle system; stability; discrete spectrum;
D O I
10.1007/s11232-007-0116-y
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
For a system Z(n) of n identical pseudorelativistic particles, we show that under some restrictions on the pair interaction potentials, there is an infinite sequence of numbers n(s), s = 1, 2,..., such that the system Z(n) is stable for (n) = n(s), and the inequality sup (s)n(s)+1n (-1)(s)< +infinity holds. Furthermore, we show that if the system Z(n) is stable, then the discrete spectrum of the energy operator for the relative motion of the system Z(n) is nonempty for some values of the total momentum of the particles in the system. The stability of n-particle systems was previously studied only for nonrelativistic particles.
引用
收藏
页码:1322 / 1330
页数:9
相关论文
共 50 条
  • [1] Stability of n-particle pseudorelativistic systems
    G. M. Zhislin
    [J]. Theoretical and Mathematical Physics, 2007, 152 : 1322 - 1330
  • [2] ON THE STABILITY OF N-PARTICLE SYSTEMS
    VUGALTER, SA
    ZHISLIN, GM
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1988, 76 (01) : 757 - 765
  • [3] RELATIVISTIC N-PARTICLE SYSTEMS AND CONFINEMENT
    KING, MJ
    ROHRLICH, F
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1980, 25 (04): : 490 - 491
  • [4] HAMILTONIANS FOR CONSTRAINED N-PARTICLE SYSTEMS
    NAUTS, A
    CHAPUISAT, X
    [J]. CHEMICAL PHYSICS LETTERS, 1987, 136 (02) : 164 - 170
  • [5] VIRTUAL LEVELS OF N-PARTICLE SYSTEMS
    ZHISLIN, GM
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1986, 68 (02) : 815 - 823
  • [6] N-particle nonclassicality without N-particle correlations
    Wiesniak, Marcin
    Nawareg, Mohamed
    Zukowski, Marek
    [J]. PHYSICAL REVIEW A, 2012, 86 (04):
  • [7] ON CANONICAL RELATIVISTIC KINEMATICS OF N-PARTICLE SYSTEMS
    CHAKRABARTI, A
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (07) : 922 - +
  • [8] Thermostatted N-particle systems and orbital measures
    Rondoni, L
    Morriss, GP
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1997, 290 (1-2): : 173 - 181
  • [9] SHARP PROPAGATION ESTIMATES FOR N-PARTICLE SYSTEMS
    GERARD, C
    [J]. DUKE MATHEMATICAL JOURNAL, 1992, 67 (03) : 483 - 515
  • [10] Stability of trajectories for N-particle dynamics with a singular potential
    Barre, J.
    Hauray, M.
    Jabin, P. E.
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2010,