Reconstructing parameters of the FitzHugh-Nagumo system from boundary potential measurements

被引:10
|
作者
He, Yuan [1 ]
Keyes, David E. [1 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
FitzHugh-Nagumo model; electrocardiology; parameter identification; PDE-constrained optimization; KKT system; Newton-Krylov method; inverse problems;
D O I
10.1007/s10827-007-0035-9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider distributed parameter identification problems for the FitzHugh-Nagumo model of electrocardiology. The model describes the evolution of electrical potentials in heart tissues. The mathematical problem is to reconstruct physical parameters of the system through partial knowledge of its solutions on the boundary of the domain. We present a parallel algorithm of Newton-Krylov type that combines Newton's method for numerical optimization with Krylov subspace solvers for the resulting Karush-Kuhn-Tucker system. We show by numerical simulations that parameter reconstruction can be performed from measurements taken on the boundary of the domain only. We discuss the effects of various model parameters on the quality of reconstructions.
引用
收藏
页码:251 / 264
页数:14
相关论文
共 50 条
  • [1] Reconstructing parameters of the FitzHugh–Nagumo system from boundary potential measurements
    Yuan He
    David E. Keyes
    Journal of Computational Neuroscience, 2007, 23 : 251 - 264
  • [2] Cluster solutions for the FitzHugh-Nagumo system with Neumann boundary conditions
    Hu, Yeyao
    Xie, Weihong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 374 : 95 - 125
  • [3] FITZHUGH-NAGUMO EQUATIONS ARE A GRADIENT SYSTEM
    MORNEV, OA
    PANFILOV, AV
    ALIEV, RR
    BIOFIZIKA, 1992, 37 (01): : 123 - 125
  • [4] Clustered spots in the FitzHugh-Nagumo system
    Wei, JC
    Winter, M
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 213 (01) : 121 - 145
  • [5] Lateral overdetermination of the FitzHugh-Nagumo system
    Cox, S
    Wagner, A
    INVERSE PROBLEMS, 2004, 20 (05) : 1639 - 1647
  • [6] The stabilization of coupled FitzHugh-Nagumo system
    Yu, Xin
    Wang, Renzhi
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 875 - 877
  • [7] Bifurcations of FitzHugh-Nagumo (FHN) System
    Ongay Larios, Fernando
    Agueero Granados, Maximo Augusto
    CIENCIA ERGO-SUM, 2010, 17 (03) : 295 - 306
  • [8] Local bifurcation for the FitzHugh-Nagumo system
    Rocsoreanu, C
    Sterpu, M
    ANALYSIS AND OPTIMIZATION OF DIFFERENTIAL SYSTEMS, 2003, 121 : 345 - 356
  • [9] The modified FitzHugh-Nagumo system as an oscillator
    Rabinovitch, A.
    Friedman, M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (03) : 371 - 378
  • [10] Analysis of the stochastic FitzHugh-Nagumo system
    Bonaccorsi, Stefano
    Mastrogiacomo, Elisa
    INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2008, 11 (03) : 427 - 446