Reconstructing parameters of the FitzHugh-Nagumo system from boundary potential measurements

被引:10
|
作者
He, Yuan [1 ]
Keyes, David E. [1 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
基金
美国国家科学基金会;
关键词
FitzHugh-Nagumo model; electrocardiology; parameter identification; PDE-constrained optimization; KKT system; Newton-Krylov method; inverse problems;
D O I
10.1007/s10827-007-0035-9
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We consider distributed parameter identification problems for the FitzHugh-Nagumo model of electrocardiology. The model describes the evolution of electrical potentials in heart tissues. The mathematical problem is to reconstruct physical parameters of the system through partial knowledge of its solutions on the boundary of the domain. We present a parallel algorithm of Newton-Krylov type that combines Newton's method for numerical optimization with Krylov subspace solvers for the resulting Karush-Kuhn-Tucker system. We show by numerical simulations that parameter reconstruction can be performed from measurements taken on the boundary of the domain only. We discuss the effects of various model parameters on the quality of reconstructions.
引用
收藏
页码:251 / 264
页数:14
相关论文
共 50 条