Covering numbers of Gaussian reproducing kernel Hilbert spaces

被引:20
|
作者
Kuehn, Thomas [1 ]
机构
[1] Univ Leipzig, Math Inst, D-04103 Leipzig, Germany
关键词
Covering numbers; Gaussian RKHS; Learning theory; Smooth Gaussian processes; Small deviations; SUPPORT VECTOR MACHINES; METRIC ENTROPY;
D O I
10.1016/j.jco.2011.01.005
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Metric entropy quantities, like covering numbers or entropy numbers, and positive definite kernels play an important role in mathematical learning theory. Using smoothness properties of the Fourier transform of the kernels, Zhou [D.-X. Zhou, The covering number in learning theory, J. Complexity 18 (3) (2002) 739-767] proved an upper estimate for the covering numbers of the unit ball of Gaussian reproducing kernel Hilbert spaces (RKHSs), considered as a subset of the space of continuous functions. In this note we determine the exact asymptotic order of these covering numbers, exploiting an explicit description of Gaussian RKHSs via orthonormal bases. We show that Zhou's estimate is almost sharp (up to a double logarithmic factor), but his conjecture on the correct asymptotic rate is far too optimistic. Moreover we give an application of our entropy results to small deviations of certain smooth Gaussian processes. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:489 / 499
页数:11
相关论文
共 50 条
  • [1] INTEGRATION IN REPRODUCING KERNEL HILBERT SPACES OF GAUSSIAN KERNELS
    Karvonen, Toni
    Oates, Chris J.
    Girolami, Mark
    [J]. MATHEMATICS OF COMPUTATION, 2021, 90 (331) : 2209 - 2233
  • [2] An explicit description of the reproducing kernel Hilbert spaces of Gaussian RBF kernels
    Steinwart, Ingo
    Hush, Don
    Scovel, Clint
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (10) : 4635 - 4643
  • [3] REPRODUCING KERNEL HILBERT SPACES AND LAW OF ITERATED LOGARITHM FOR GAUSSIAN PROCESSES
    LAI, TL
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1974, 29 (01): : 7 - 19
  • [4] Pasting Reproducing Kernel Hilbert Spaces
    Sawano, Yoshihiro
    [J]. NEW TRENDS IN ANALYSIS AND INTERDISCIPLINARY APPLICATIONS, 2017, : 401 - 407
  • [5] A Primer on Reproducing Kernel Hilbert Spaces
    Manton, Jonathan H.
    Amblard, Pierre-Olivier
    [J]. FOUNDATIONS AND TRENDS IN SIGNAL PROCESSING, 2014, 8 (1-2): : 1 - 126
  • [6] On isomorphism of reproducing kernel Hilbert spaces
    V. V. Napalkov
    V. V. Napalkov
    [J]. Doklady Mathematics, 2017, 95 : 270 - 272
  • [7] Noncommutative reproducing kernel Hilbert spaces
    Ball, Joseph A.
    Marx, Gregory
    Vinnikov, Victor
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (07) : 1844 - 1920
  • [8] RELATIVE REPRODUCING KERNEL HILBERT SPACES
    Alpay, Daniel
    Jorgensen, Palle
    Volok, Dan
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (11) : 3889 - 3895
  • [9] On reproducing kernel Hilbert spaces of polynomials
    Li, XJ
    [J]. MATHEMATISCHE NACHRICHTEN, 1997, 185 : 115 - 148
  • [10] On isomorphism of reproducing kernel Hilbert spaces
    Napalkov, V. V.
    Napalkov, V. V., Jr.
    [J]. DOKLADY MATHEMATICS, 2017, 95 (03) : 270 - 272