A deep learning-based computational prediction model for characterizing cellular biomarker distribution in tumor microenvironment

被引:0
|
作者
Peng, Zhengyao [1 ,2 ]
Bian, Chang [1 ,2 ]
Du, Yang [1 ,2 ]
Tian, Jie [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[3] Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Sch Med Sci & Engn, Beijing 100191, Peoples R China
[4] Xidian Univ, Sch Life Sci & Technol, Xian 710071, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
tumor microenvironment; cellular biomarker; deep learning; semi-supervised training;
D O I
10.1117/12.2610640
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Evaluation of cancer cell and immune cell distribution in tumor microenvironment (TME) is one of the most important factors for guiding cancer immunotherapy and assessing therapeutic response. Multiplexed immunohistochemistry (mIHC) is often used to obtain the different types of cellular biomarker expression and distribution information in TME, but mIHC is limited by time-consuming and cost-intensive, and pathologists' objectives etc. In this work, we proposed a deep learning-based modified U-Net ( m-Unet), by replacing the original convolution sub-module with a modified block to predict the distribution of several typical cellular biomarkers' expression and distribution information in TME. We have demonstrated that our model can be trained in both fully supervised and semi-supervised manners. The model can extract segmentation information from Hematoxylin and Eosin (H&E) images, and predict the cellular biomarker distributions including panCK for colon cancer cells, CD3 and CD20 for tumor infiltrating lymphocytes (TILs) and DAPI for nucleus. We have demonstrated that our model can be trained in both fully supervised and semi-supervised manners and. the performance of the m-Unet is better than the U-Net in this work. The optimal prediction accuracy of m-Unet is 88.3% on the test dataset. In general, this model possesses the potential to assist the clinical TME analysis.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Development of a Deep Learning-Based Prediction Model for Water Consumption at the Household Level
    Kim, Jongsung
    Lee, Haneul
    Lee, Myungjin
    Han, Heechan
    Kim, Donghyun
    Kim, Hung Soo
    WATER, 2022, 14 (09)
  • [42] Deep Learning-Based Energy Consumption Prediction Model for Green Industrial Parks
    Lai, Chaoan
    Wang, Yina
    Zhu, Jianhua
    Zhou, Xuequan
    APPLIED ARTIFICIAL INTELLIGENCE, 2025, 39 (01)
  • [43] Deep Learning-Based Corporate Performance Prediction Model Considering Technical Capability
    Lee, Joonhyuck
    Jang, Dongsik
    Park, Sangsung
    SUSTAINABILITY, 2017, 9 (06)
  • [44] A Deep Learning-Based Neural Network Model for Autism Spectrum Disorder Prediction
    Sultan, Mohamad T.
    El Sayed, Hesham
    Abduljabar, Mohammed
    APPLIED INTELLIGENCE AND INFORMATICS, AII 2023, 2024, 2065 : 3 - 20
  • [45] Wheel Odometry with Deep Learning-Based Error Prediction Model for Vehicle Localization
    He, Ke
    Ding, Haitao
    Xu, Nan
    Guo, Konghui
    APPLIED SCIENCES-BASEL, 2023, 13 (09):
  • [46] Deep Learning-Based Stock Market Prediction and Investment Model for Financial Management
    Huang, Yijing
    Vakharia, Vinay
    JOURNAL OF ORGANIZATIONAL AND END USER COMPUTING, 2024, 36 (01)
  • [47] A deep learning-based multi-model ensemble method for cancer prediction
    Xiao, Yawen
    Wu, Jun
    Lin, Zongli
    Zhao, Xiaodong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 153 : 1 - 9
  • [48] Deep Learning-Based Phase Transition Prediction Model in Nonequilibrium Thermodynamic Systems
    Zhang, Ronglei
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2025, 43 (01) : 326 - 334
  • [49] Machine Learning and Deep Learning-Based Students’ Grade Prediction
    Korchi A.
    Messaoudi F.
    Abatal A.
    Manzali Y.
    Operations Research Forum, 4 (4)
  • [50] Explainable ensemble deep learning-based model for brain tumor detection and classification
    Khalid M. Hosny
    Mahmoud A. Mohammed
    Rania A. Salama
    Ahmed M. Elshewey
    Neural Computing and Applications, 2025, 37 (3) : 1289 - 1306