A deep learning-based computational prediction model for characterizing cellular biomarker distribution in tumor microenvironment

被引:0
|
作者
Peng, Zhengyao [1 ,2 ]
Bian, Chang [1 ,2 ]
Du, Yang [1 ,2 ]
Tian, Jie [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[3] Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Sch Med Sci & Engn, Beijing 100191, Peoples R China
[4] Xidian Univ, Sch Life Sci & Technol, Xian 710071, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
tumor microenvironment; cellular biomarker; deep learning; semi-supervised training;
D O I
10.1117/12.2610640
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Evaluation of cancer cell and immune cell distribution in tumor microenvironment (TME) is one of the most important factors for guiding cancer immunotherapy and assessing therapeutic response. Multiplexed immunohistochemistry (mIHC) is often used to obtain the different types of cellular biomarker expression and distribution information in TME, but mIHC is limited by time-consuming and cost-intensive, and pathologists' objectives etc. In this work, we proposed a deep learning-based modified U-Net ( m-Unet), by replacing the original convolution sub-module with a modified block to predict the distribution of several typical cellular biomarkers' expression and distribution information in TME. We have demonstrated that our model can be trained in both fully supervised and semi-supervised manners. The model can extract segmentation information from Hematoxylin and Eosin (H&E) images, and predict the cellular biomarker distributions including panCK for colon cancer cells, CD3 and CD20 for tumor infiltrating lymphocytes (TILs) and DAPI for nucleus. We have demonstrated that our model can be trained in both fully supervised and semi-supervised manners and. the performance of the m-Unet is better than the U-Net in this work. The optimal prediction accuracy of m-Unet is 88.3% on the test dataset. In general, this model possesses the potential to assist the clinical TME analysis.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Deep learning-based prediction of autoimmune diseases
    Yang, Donghong
    Peng, Xin
    Zheng, Senlin
    Peng, Shenglan
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [32] Deep Learning-Based Weather Prediction: A Survey
    Ren, Xiaoli
    Li, Xiaoyong
    Ren, Kaijun
    Song, Junqiang
    Xu, Zichen
    Deng, Kefeng
    Wang, Xiang
    BIG DATA RESEARCH, 2021, 23
  • [33] Development of a deep learning-based patient-specific target contour prediction model for markerless tumor positioning
    Zhou, Dejun
    Nakamura, Mitsuhiro
    Mukumoto, Nobutaka
    Yoshimura, Michio
    Mizowaki, Takashi
    MEDICAL PHYSICS, 2022, 49 (03) : 1382 - 1390
  • [34] Hepatitis C Prediction Using Machine Learning and Deep Learning-Based Hybrid Approach with Biomarker and Clinical Data
    Rokiya Ripa
    Khandaker Mohammad Mohi Uddin
    Mir Jafikul Alam
    Md. Mahbubur Rahman
    Biomedical Materials & Devices, 2025, 3 (1): : 558 - 575
  • [35] Deep Learning-Based Cellular Random Access Framework
    Jang, Han Seung
    Lee, Hoon
    Quek, Tony Q. S.
    Shin, Hyundong
    IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2021, 20 (11) : 7503 - 7518
  • [36] Distinct tumor signatures using deep learning-based characterization of the peritumoral microenvironment in glioblastomas and brain metastases
    Zahra Riahi Samani
    Drew Parker
    Ronald Wolf
    Wes Hodges
    Steven Brem
    Ragini Verma
    Scientific Reports, 11
  • [37] Deep learning-based tumor microenvironment analysis in colon adenocarcinoma histopathological whole-slide images
    Jiao, Yiping
    Li, Junhong
    Qian, Chenqi
    Fei, Shumin
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2021, 204
  • [38] Distinct tumor signatures using deep learning-based characterization of the peritumoral microenvironment in glioblastomas and brain metastases
    Samani, Zahra Riahi
    Parker, Drew
    Wolf, Ronald
    Hodges, Wes
    Brem, Steven
    Verma, Ragini
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [39] A deep learning-based dual-omics prediction model for radiation pneumonitis
    Liang Bin
    Tian Yuan
    Su Zhaohui
    Ren Wenting
    Liu Zhiqiang
    Huang Peng
    You Shuying
    Deng Lei
    Wang Jianyang
    Wang Jingbo
    Zhang Tao
    Lu Xiaotong
    Bi Nan
    Dai Jianrong
    MEDICAL PHYSICS, 2021, 48 (10) : 6247 - 6256
  • [40] Deep learning-based wind noise prediction study for automotive clay model
    Huang, Lina
    Wang, Dengfeng
    Cao, Xiaolin
    Zhang, Xiaopeng
    Huang, Bingtong
    He, Yang
    Grabner, Gottfried
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (04)