A deep learning-based computational prediction model for characterizing cellular biomarker distribution in tumor microenvironment

被引:0
|
作者
Peng, Zhengyao [1 ,2 ]
Bian, Chang [1 ,2 ]
Du, Yang [1 ,2 ]
Tian, Jie [1 ,2 ,3 ,4 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, CAS Key Lab Mol Imaging, Beijing 100190, Peoples R China
[2] Univ Chinese Acad Sci, Sch Artificial Intelligence, Beijing 100049, Peoples R China
[3] Beihang Univ, Beijing Adv Innovat Ctr Big Data Based Precis Med, Sch Med Sci & Engn, Beijing 100191, Peoples R China
[4] Xidian Univ, Sch Life Sci & Technol, Xian 710071, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
tumor microenvironment; cellular biomarker; deep learning; semi-supervised training;
D O I
10.1117/12.2610640
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Evaluation of cancer cell and immune cell distribution in tumor microenvironment (TME) is one of the most important factors for guiding cancer immunotherapy and assessing therapeutic response. Multiplexed immunohistochemistry (mIHC) is often used to obtain the different types of cellular biomarker expression and distribution information in TME, but mIHC is limited by time-consuming and cost-intensive, and pathologists' objectives etc. In this work, we proposed a deep learning-based modified U-Net ( m-Unet), by replacing the original convolution sub-module with a modified block to predict the distribution of several typical cellular biomarkers' expression and distribution information in TME. We have demonstrated that our model can be trained in both fully supervised and semi-supervised manners. The model can extract segmentation information from Hematoxylin and Eosin (H&E) images, and predict the cellular biomarker distributions including panCK for colon cancer cells, CD3 and CD20 for tumor infiltrating lymphocytes (TILs) and DAPI for nucleus. We have demonstrated that our model can be trained in both fully supervised and semi-supervised manners and. the performance of the m-Unet is better than the U-Net in this work. The optimal prediction accuracy of m-Unet is 88.3% on the test dataset. In general, this model possesses the potential to assist the clinical TME analysis.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] ImmunoAIzer: A Deep Learning-Based Computational Framework to Characterize Cell Distribution and Gene Mutation in Tumor Microenvironment
    Bian, Chang
    Wang, Yu
    Lu, Zhihao
    An, Yu
    Wang, Hanfan
    Kong, Lingxin
    Du, Yang
    Tian, Jie
    CANCERS, 2021, 13 (07)
  • [2] Deep learning-based prediction model for predicting the tumor origin of cancers of unknown primary
    Lan, Lan
    Zhang, Yuman
    Li, Xing
    Wang, Kai
    JOURNAL OF CLINICAL ONCOLOGY, 2023, 41 (16)
  • [3] Deep Learning-Based Model for Financial Distress Prediction
    Elhoseny, Mohamed
    Metawa, Noura
    Sztano, Gabor
    El-hasnony, Ibrahim M.
    ANNALS OF OPERATIONS RESEARCH, 2025, 345 (2-3) : 885 - 907
  • [4] A Deep Learning-Based Pathomics Methodology for Quantifying and Characterizing Nucleated Cells in the Bone Marrow Microenvironment
    Krichevsky, Spencer
    Ouseph, Madhu M.
    Zhang, Yuwei
    Abu-Zeinah, Ghaith
    Scandura, Joseph M.
    Gupta, Rajarsi
    BLOOD, 2023, 142
  • [5] Optimized deep learning-based prediction model for chiller performance prediction
    Sathesh, Tamilarasan
    Shih, Yang-Cheng
    DATA & KNOWLEDGE ENGINEERING, 2023, 144
  • [6] Interpretability of a Deep Learning-Based Prediction Model for Mandibular Osteoradionecrosis
    Humbert-Vidan, L.
    Patel, V.
    King, A. P.
    GuerreroUrbano, T.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : E468 - E469
  • [7] New Deep Learning-Based Passenger Flow Prediction Model
    Utku, Anil
    Kaya, Sema Kayapinar
    TRANSPORTATION RESEARCH RECORD, 2023, 2677 (03) : 1 - 17
  • [8] DeepmiRNATar: A deep learning-based model for miRNA targets prediction
    Peng, Huimin
    Li, Chenyu
    Lu, Ying
    Li, Dazhou
    MCB Molecular and Cellular Biomechanics, 2024, 21 (03):
  • [9] Deep Learning-Based Throughput Prediction in 5G Cellular Networks
    Batool, Iqra
    Fouda, Mostafa M.
    Fadlullah, Zubair Md
    2024 INTERNATIONAL CONFERENCE ON SMART APPLICATIONS, COMMUNICATIONS AND NETWORKING, SMARTNETS-2024, 2024,
  • [10] Modeling spatio-temporal distribution of soil moisture by deep learning-based cellular automata model
    SONG Xiaodong
    ZHANG Ganlin
    LIU Feng
    LI Decheng
    ZHAO Yuguo
    YANG Jinling
    Journal of Arid Land, 2016, 8 (05) : 734 - 748