On a fluid-structure interaction problem in velocity-displacement formulation

被引:3
|
作者
Flori, F [1 ]
Orenga, P [1 ]
机构
[1] Univ Corse, Ctr Math & Calcul Sci, URA 2053, F-20250 Corti, France
来源
关键词
D O I
10.1142/S0218202598000251
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present in this paper an existence result of weak solutions as well as some regularity results for a fluid-structure interaction problem when a fluid velocity-structure displacement formulation is used. This formulation induces a difficulty connected with the coupling condition. Indeed, unlike the pressure-displacement formulation, we do not have a Neumann condition and consequently it is more difficult to obtain weak solutions.
引用
收藏
页码:543 / 572
页数:30
相关论文
共 50 条
  • [31] Solving a rational eigenvalue problem in fluid-structure interaction
    Voss, H
    [J]. APPLICATIONS OF HIGH-PERFORMANCE COMPUTING IN ENGINEERING VII, 2002, 7 : 179 - 188
  • [32] Extension theorems related to a fluid-structure interaction problem
    Halanay, Andrei
    Murea, Cornel Marius
    Tiba, Dan
    [J]. BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2018, 61 (04): : 417 - 437
  • [33] On the existence and the uniqueness of the solution to a fluid-structure interaction problem
    Boffi, Daniele
    Gastaldi, Lucia
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 279 : 136 - 161
  • [34] SOLUTIONS TO A FLUID-STRUCTURE INTERACTION FREE BOUNDARY PROBLEM
    Kukavica, Igor
    Tuffaha, Amjad
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (04) : 1355 - 1389
  • [35] An Introduction to Fluid-Structure Interaction: Application to the Piston Problem
    Lefrancois, Emmanuel
    Boufflet, Jean-Paul
    [J]. SIAM REVIEW, 2010, 52 (04) : 747 - 767
  • [36] A new spectral problem in fluid-structure interaction with transpiration
    Fernández, MA
    Le Tallec, P
    [J]. COMPTES RENDUS MATHEMATIQUE, 2002, 334 (02) : 167 - 172
  • [37] Numerical analysis of a linearised fluid-structure interaction problem
    Le Tallec, P
    Mani, S
    [J]. NUMERISCHE MATHEMATIK, 2000, 87 (02) : 317 - 354
  • [38] Solvability of a fluid-structure interaction problem with semigroup theory
    Krier, Maxime
    Orlik, Julia
    [J]. AIMS MATHEMATICS, 2023, 8 (12): : 29490 - 29516
  • [39] Fluid-structure interaction analysis with a subsonic potential-based fluid formulation
    Sussman, T
    Sundqvist, J
    [J]. COMPUTERS & STRUCTURES, 2003, 81 (8-11) : 949 - 962
  • [40] Fluid-Structure Interaction
    Ohayon, Roger
    [J]. PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON STRUCTURAL DYNAMICS, EURODYN 2011, 2011, : 53 - 59