On the existence and the uniqueness of the solution to a fluid-structure interaction problem

被引:6
|
作者
Boffi, Daniele [1 ,2 ]
Gastaldi, Lucia [3 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Thuwal, Saudi Arabia
[2] Univ Pavia, Pavia, Italy
[3] Univ Brescia, DICATAM, Brescia, Italy
关键词
D O I
10.1016/j.jde.2021.01.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the linearized version of a system of partial differential equations arising from a fluid-structure interaction model. We prove the existence and the uniqueness of the solution under natural regularity assumptions. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页码:136 / 161
页数:26
相关论文
共 50 条
  • [1] On the existence and the uniqueness of the solution of a fluid-structure interaction scattering problem
    Barucq, Helene
    Djellouli, Rabia
    Estecahandy, Elodie
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 412 (02) : 571 - 588
  • [2] Existence for an unsteady fluid-structure interaction problem
    Grandmont, C
    Maday, Y
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2000, 34 (03): : 609 - 636
  • [3] Existence of a weak solution to a nonlinear fluid-structure interaction problem with heat exchange
    Macha, Vaclav
    Muha, Boris
    Necasova, Sarka
    Roy, Arnab
    Trifunovic, Srdan
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (08) : 1591 - 1635
  • [4] Existence of a weak solution to the fluid-structure interaction problem in 3D
    Trifunovic, Srdan
    Wang, Ya-Guang
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (04) : 1495 - 1531
  • [5] An exact solution of a fluid-structure interaction problem
    Marusic-Paloka, Eduard
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2021, 101 (12):
  • [6] Existence and uniqueness of solution for fluid-plate interaction problem
    Curkovic, A.
    Marusic-Paloka, E.
    APPLICABLE ANALYSIS, 2016, 95 (04) : 715 - 730
  • [7] Existence of a weak solution to a regularized moving boundary fluid-structure interaction problem with poroelastic media
    Kuan, Jeffrey
    Canic, Suncica
    Muha, Boris
    COMPTES RENDUS MECANIQUE, 2023, 351
  • [8] Existence of a weak solution to a regularized moving boundary fluid-structure interaction problem with poroelastic media
    Kuan, Jeffrey
    Canic, Suncica
    Muha, Boris
    COMPTES RENDUS MECANIQUE, 2023, 351
  • [9] MAXIMAL-IN-TIME EXISTENCE AND UNIQUENESS OF STRONG SOLUTION OF A 3D FLUID-STRUCTURE INTERACTION MODEL
    Maity, Debayan
    Raymond, Jean-Pierre
    Roy, Arnab
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (06) : 6338 - 6378
  • [10] On a fluid-structure interaction problem
    Flori, F
    Orenga, P
    TRENDS IN APPLICATIONS OF MATHEMATICS TO MECHANICS, 2000, 106 : 293 - 305