Multivariate matrix Mittag-Leffler distributions

被引:8
|
作者
Albrecher, Hansjoerg [1 ,2 ]
Bladt, Martin [1 ]
Bladt, Mogens [3 ]
机构
[1] Univ Lausanne, Fac Business & Econ, Dept Actuarial Sci, CH-1015 Lausanne, Switzerland
[2] Univ Lausanne, Swiss Finance Inst, CH-1015 Lausanne, Switzerland
[3] Univ Copenhagen, Dept Math Sci, Univ Pk 5, DK-2100 Copenhagen O, Denmark
关键词
Multivariate distribution; Heavy tails; Markov process; Mittag-Leffler distribution; Phase-type; Matrix distribution; Extremes; Laplace transforms;
D O I
10.1007/s10463-020-00750-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We extend the construction principle of multivariate phase-type distributions to establish an analytically tractable class of heavy-tailed multivariate random variables whose marginal distributions are of Mittag-Leffler type with arbitrary index of regular variation. The construction can essentially be seen as allowing a scalar parameter to become matrix-valued. The class of distributions is shown to be dense among all multivariate positive random variables and hence provides a versatile candidate for the modelling of heavy-tailed, but tail-independent, risks in various fields of application.
引用
收藏
页码:369 / 394
页数:26
相关论文
共 50 条
  • [1] Multivariate matrix Mittag–Leffler distributions
    Hansjörg Albrecher
    Martin Bladt
    Mogens Bladt
    [J]. Annals of the Institute of Statistical Mathematics, 2021, 73 : 369 - 394
  • [2] On the Mittag-Leffler distributions
    Lin, GD
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 74 (01) : 1 - 9
  • [3] DISCRETE MITTAG-LEFFLER DISTRIBUTIONS
    PILLAI, RN
    JAYAKUMAR, K
    [J]. STATISTICS & PROBABILITY LETTERS, 1995, 23 (03) : 271 - 274
  • [4] ON MITTAG-LEFFLER FUNCTIONS AND RELATED DISTRIBUTIONS
    PILLAI, RN
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1990, 42 (01) : 157 - 161
  • [5] Matrix Mittag-Leffler distributions and modeling heavy-tailed risks
    Albrecher, Hansjoerg
    Bladt, Martin
    Bladt, Mogens
    [J]. EXTREMES, 2020, 23 (03) : 425 - 450
  • [6] On the fractional calculus of multivariate Mittag-Leffler functions
    Ozarslan, Mehmet Ali
    Fernandez, Arran
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (02) : 247 - 273
  • [7] Multivariate analogue of generalized Mittag-Leffler function
    Saxena, R. K.
    Kalla, S. L.
    Saxena, Ravi
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2011, 22 (07) : 533 - 548
  • [8] On Mittag-Leffler distributions and related stochastic processes
    Huillet, Thierry E.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2016, 296 : 181 - 211
  • [9] The discrete delta and nabla Mittag-Leffler distributions
    Ganji, M.
    Gharari, F.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (18) : 4568 - 4589
  • [10] Computing the Mittag-Leffler function of a matrix argument
    Cardoso, Joao R.
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (05) : 2248 - 2274