Multivariate matrix Mittag-Leffler distributions

被引:8
|
作者
Albrecher, Hansjoerg [1 ,2 ]
Bladt, Martin [1 ]
Bladt, Mogens [3 ]
机构
[1] Univ Lausanne, Fac Business & Econ, Dept Actuarial Sci, CH-1015 Lausanne, Switzerland
[2] Univ Lausanne, Swiss Finance Inst, CH-1015 Lausanne, Switzerland
[3] Univ Copenhagen, Dept Math Sci, Univ Pk 5, DK-2100 Copenhagen O, Denmark
关键词
Multivariate distribution; Heavy tails; Markov process; Mittag-Leffler distribution; Phase-type; Matrix distribution; Extremes; Laplace transforms;
D O I
10.1007/s10463-020-00750-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We extend the construction principle of multivariate phase-type distributions to establish an analytically tractable class of heavy-tailed multivariate random variables whose marginal distributions are of Mittag-Leffler type with arbitrary index of regular variation. The construction can essentially be seen as allowing a scalar parameter to become matrix-valued. The class of distributions is shown to be dense among all multivariate positive random variables and hence provides a versatile candidate for the modelling of heavy-tailed, but tail-independent, risks in various fields of application.
引用
收藏
页码:369 / 394
页数:26
相关论文
共 50 条
  • [21] Matrix Mittag-Leffler functions of fractional nabla calculus
    Jonnalagadda, Jagan Mohan
    [J]. COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2018, 6 (02): : 128 - 140
  • [22] Multivariate Mittag-Leffler function and related fractional integral operators
    Rahman, Gauhar
    Samraiz, Muhammad
    Alqudah, Manar A.
    Abdeljawad, Thabet
    [J]. AIMS MATHEMATICS, 2022, 8 (06): : 13276 - 13293
  • [23] Mittag-Leffler vector random fields with Mittag-Leffler direct and cross covariance functions
    Ma, Chunsheng
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2013, 65 (05) : 941 - 958
  • [24] A Note on Mixture Representations for the Linnik and Mittag-Leffler Distributions and Their Applications*
    Korolev V.Y.
    Zeifman A.I.
    [J]. Journal of Mathematical Sciences, 2016, 218 (3) : 314 - 327
  • [25] Mittag-Leffler vector random fields with Mittag-Leffler direct and cross covariance functions
    Chunsheng Ma
    [J]. Annals of the Institute of Statistical Mathematics, 2013, 65 : 941 - 958
  • [26] Optimal Mittag-Leffler Summation
    Gluzman, Simon
    [J]. AXIOMS, 2022, 11 (05)
  • [27] Estimation of Mittag-Leffler Parameters
    Cahoy, Dexter O.
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2013, 42 (02) : 303 - 315
  • [28] Mittag-Leffler Functions and Their Applications
    Haubold, H. J.
    Mathai, A. M.
    Saxena, R. K.
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2011,
  • [29] Degenerate Mittag-Leffler polynomials
    Kim, Dae San
    Kim, Taekyun
    Mansour, Toufik
    Seo, Jong-Jin
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2016, 274 : 258 - 266
  • [30] Strict Mittag-Leffler modules
    Guil Asensio, Pedro A.
    Izurdiaga, Manuel C.
    Rothmaler, Philipp
    Torrecillas, Blas
    [J]. MATHEMATICAL LOGIC QUARTERLY, 2011, 57 (06) : 566 - 570