The discrete delta and nabla Mittag-Leffler distributions

被引:9
|
作者
Ganji, M. [1 ]
Gharari, F. [1 ]
机构
[1] Univ Mohaghegh Ardabili, Dept Stat, Ardebil, Iran
关键词
Discrete Laplace transform; Mittag-Leffler distribution; moment generating function; time scale;
D O I
10.1080/03610926.2017.1377254
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we extend Bernstein theorem by using basic tools of calculus on time scales, and, as a further application of it, the discrete nabla and delta Mittag-Leffler distributions are introduced here with respect to their Laplace transforms on the discrete time scale. For these discrete distributions, infinite divisibility and geometric infinite divisibility are proved along with some statistical properties. The delta and nabla Mittag-Leffler processes are defined.
引用
收藏
页码:4568 / 4589
页数:22
相关论文
共 50 条
  • [1] DISCRETE MITTAG-LEFFLER DISTRIBUTIONS
    PILLAI, RN
    JAYAKUMAR, K
    [J]. STATISTICS & PROBABILITY LETTERS, 1995, 23 (03) : 271 - 274
  • [2] Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel
    Abdeljawad, Thabet
    Baleanu, Dumitru
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 102 : 106 - 110
  • [3] On the Mittag-Leffler distributions
    Lin, GD
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1998, 74 (01) : 1 - 9
  • [4] Mittag-Leffler stability of nabla discrete fractional-order dynamic systems
    Wei, Yingdong
    Wei, Yiheng
    Chen, Yuquan
    Wang, Yong
    [J]. NONLINEAR DYNAMICS, 2020, 101 (01) : 407 - 417
  • [5] Matrix Mittag-Leffler functions of fractional nabla calculus
    Jonnalagadda, Jagan Mohan
    [J]. COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2018, 6 (02): : 128 - 140
  • [6] A Generalization to Bivariate Mittag-Leffler and Bivariate Discrete Mittag-Leffler Autoregressive Processes
    Jayakumar, K.
    Ristic, Miroslav M.
    Mundassery, Davis Antony
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2010, 39 (06) : 942 - 955
  • [7] MITTAG-LEFFLER STABILITY OF SYSTEMS OF FRACTIONAL NABLA DIFFERENCE EQUATIONS
    Eloe, Paul
    Jonnalagadda, Jaganmohan
    [J]. BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (04) : 977 - 992
  • [8] Multivariate matrix Mittag-Leffler distributions
    Albrecher, Hansjoerg
    Bladt, Martin
    Bladt, Mogens
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2021, 73 (02) : 369 - 394
  • [9] ON MITTAG-LEFFLER FUNCTIONS AND RELATED DISTRIBUTIONS
    PILLAI, RN
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1990, 42 (01) : 157 - 161
  • [10] Mittag-Leffler Functions in Discrete Time
    Atici, Ferhan M.
    Chang, Samuel
    Jonnalagadda, Jagan Mohan
    [J]. FRACTAL AND FRACTIONAL, 2023, 7 (03)