TACDFSL: Task Adaptive Cross Domain Few-Shot Learning

被引:1
|
作者
Zhang, Qi [1 ]
Jiang, Yingluo [1 ]
Wen, Zhijie [1 ]
机构
[1] Shanghai Univ, Dept Math, Coll Sci, Shanghai 200444, Peoples R China
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 06期
基金
中国国家自然科学基金;
关键词
cross domain few-shot learning; domain shift; empirical marginal distribution; feature distribution transformation;
D O I
10.3390/sym14061097
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cross Domain Few-Shot Learning (CDFSL) has attracted the attention of many scholars since it is closer to reality. The domain shift between the source domain and the target domain is a crucial problem for CDFSL. The essence of domain shift is the marginal distribution difference between two domains which is implicit and unknown. So the empirical marginal distribution measurement is proposed, that is, WDMDS (Wasserstein Distance for Measuring Domain Shift) and MMDMDS (Maximum Mean Discrepancy for Measuring Domain Shift). Besides this, pre-training a feature extractor and fine-tuning a classifier are used in order to have a good generalization in CDFSL. Since the feature obtained by the feature extractor is high-dimensional and left-biased, the adaptive feature distribution transformation is proposed, to make the feature distribution of each sample be approximately Gaussian distribution. This approximate symmetric distribution improves image classification accuracy by 3% on average. In addition, the applicability of different classifiers for CDFSL is investigated, and the classification model should be selected based on the empirical marginal distribution difference between the two domains. The Task Adaptive Cross Domain Few-Shot Learning (TACDFSL) is proposed based on the above ideas. TACDFSL improves image classification accuracy by 3-9%.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Ranking Distance Calibration for Cross-Domain Few-Shot Learning
    Li, Pan
    Gong, Shaogang
    Wang, Chengjie
    Fu, Yanwei
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 9089 - 9098
  • [42] Experiments in cross-domain few-shot learning for image classification
    Wang, Hongyu
    Gouk, Henry
    Fraser, Huon
    Frank, Eibe
    Pfahringer, Bernhard
    Mayo, Michael
    Holmes, Geoffrey
    JOURNAL OF THE ROYAL SOCIETY OF NEW ZEALAND, 2023, 53 (01) : 169 - 191
  • [43] Feature extractor stacking for cross-domain few-shot learning
    Wang, Hongyu
    Frank, Eibe
    Pfahringer, Bernhard
    Mayo, Michael
    Holmes, Geoffrey
    MACHINE LEARNING, 2024, 113 (01) : 121 - 158
  • [44] Relevance equilibrium network for cross-domain few-shot learning
    Ji, Zhong
    Kong, Xiangyu
    Wang, Xuan
    Liu, Xiyao
    INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2024, 13 (02)
  • [45] Feature extractor stacking for cross-domain few-shot learning
    Hongyu Wang
    Eibe Frank
    Bernhard Pfahringer
    Michael Mayo
    Geoffrey Holmes
    Machine Learning, 2024, 113 : 121 - 158
  • [46] Leveraging Normalization Layer in AdaptersWith Progressive Learning and Adaptive Distillation for Cross-Domain Few-Shot Learning
    Yang, Yongjin
    Kim, Taehyeon
    Yun, Se-Young
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 16370 - 16378
  • [47] Meta-Learning with Task-Adaptive Loss Function for Few-Shot Learning
    Baik, Sungyong
    Choi, Janghoon
    Kim, Heewon
    Cho, Dohee
    Min, Jaesik
    Lee, Kyoung Mu
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9445 - 9454
  • [48] Domain Adaptation Algorithm for Few-Shot Classification Task
    Dai H.
    Hao X.-T.
    Sheng L.-J.
    Miao Q.-G.
    Jisuanji Xuebao/Chinese Journal of Computers, 2022, 45 (05): : 935 - 950
  • [49] Multi-Scale Adaptive Task Attention Network for Few-Shot Learning
    Chen, Haoxing
    Li, Huaxiong
    Li, Yaohui
    Chen, Chunlin
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 4765 - 4771
  • [50] Task-Adaptive Few-shot Node Classification
    Wang, Song
    Ding, Kaize
    Zhang, Chuxu
    Chen, Chen
    Li, Jundong
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 1910 - 1919