Ranking Distance Calibration for Cross-Domain Few-Shot Learning

被引:20
|
作者
Li, Pan [1 ]
Gong, Shaogang [1 ]
Wang, Chengjie [2 ]
Fu, Yanwei [3 ]
机构
[1] Queen Mary Univ London, London, England
[2] Tencent Youtu Lab, Shenzhen, Peoples R China
[3] Fudan Univ, Shanghai, Peoples R China
关键词
PERSON REIDENTIFICATION;
D O I
10.1109/CVPR52688.2022.00889
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent progress in few-shot learning promotes a more realistic cross-domain setting, where the source and target datasets are in different domains. Due to the domain gap and disjoint label spaces between source and target datasets, their shared knowledge is extremely limited. This encourages us to explore more information in the target domain rather than to overly elaborate training strategies on the source domain as in many existing methods. Hence, we start from a generic representation pre-trained by a cross-entropy loss and a conventional distance-based classifier, along with an image retrieval view, to employ a re-ranking process to calibrate a target distance matrix by discovering the k-reciprocal neighbours within the task. Assuming the pre-trained representation is biased towards the source, we construct a non-linear subspace to minimise task-irrelevant features there within while keep more transferrable discriminative information by a hyperbolic tangent transformation. The calibrated distance in this target-aware non-linear subspace is complementary to that in the pre-trained representation. To impose such distance calibration information onto the pre-trained representation, a Kullback-Leibler divergence loss is employed to gradually guide the model towards the calibrated distance-based distribution. Extensive evaluations on eight target domains show that this target ranking calibration process can improve conventional distance-based classifiers in few-shot learning.
引用
收藏
页码:9089 / 9098
页数:10
相关论文
共 50 条
  • [1] Understanding Cross-Domain Few-Shot Learning Based on Domain Similarity and Few-Shot Difficulty
    Oh, Jaehoon
    Kim, Sungnyun
    Ho, Namgyu
    Kim, Jin-Hwa
    Song, Hwanjun
    Yun, Se-Young
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [2] Knowledge transduction for cross-domain few-shot learning
    Li, Pengfang
    Liu, Fang
    Jiao, Licheng
    Li, Shuo
    Li, Lingling
    Liu, Xu
    Huang, Xinyan
    [J]. PATTERN RECOGNITION, 2023, 141
  • [3] Feature extractor stacking for cross-domain few-shot learning
    Wang, Hongyu
    Frank, Eibe
    Pfahringer, Bernhard
    Mayo, Michael
    Holmes, Geoffrey
    [J]. MACHINE LEARNING, 2024, 113 (01) : 121 - 158
  • [4] Relevance equilibrium network for cross-domain few-shot learning
    Ji, Zhong
    Kong, Xiangyu
    Wang, Xuan
    Liu, Xiyao
    [J]. INTERNATIONAL JOURNAL OF MULTIMEDIA INFORMATION RETRIEVAL, 2024, 13 (02)
  • [5] Spectral Decomposition and Transformation for Cross-domain Few-shot Learning
    Liu, Yicong
    Zou, Yixiong
    Li, Ruixuan
    Li, Yuhua
    [J]. NEURAL NETWORKS, 2024, 179
  • [6] Experiments in cross-domain few-shot learning for image classification
    Wang, Hongyu
    Gouk, Henry
    Fraser, Huon
    Frank, Eibe
    Pfahringer, Bernhard
    Mayo, Michael
    Holmes, Geoffrey
    [J]. JOURNAL OF THE ROYAL SOCIETY OF NEW ZEALAND, 2023, 53 (01) : 169 - 191
  • [7] Feature extractor stacking for cross-domain few-shot learning
    Hongyu Wang
    Eibe Frank
    Bernhard Pfahringer
    Michael Mayo
    Geoffrey Holmes
    [J]. Machine Learning, 2024, 113 : 121 - 158
  • [8] A Comparison of Machine Learning Methods for Cross-Domain Few-Shot Learning
    Wang, Hongyu
    Gouk, Henry
    Frank, Eibe
    Pfahringer, Bernhard
    Mayo, Michael
    [J]. AI 2020: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2020, 12576 : 445 - 457
  • [9] Learning and Adapting Diverse Representations for Cross-domain Few-shot Learning
    Liu, Ge
    Zhang, Zhongqiang
    Cai, Fuhan
    Liu, Duo
    Fang, Xiangzhong
    [J]. 2023 23RD IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS, ICDMW 2023, 2023, : 294 - 303
  • [10] Cross-Domain Few-Shot Graph Classification
    Hassani, Kaveh
    [J]. THIRTY-SIXTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTY-FOURTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE / THE TWELVETH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, : 6856 - 6864