ICF Gamma-Ray Reaction History Diagnostics

被引:42
|
作者
Herrmann, H. W. [1 ]
Young, C. S. [1 ]
Mack, J. M. [1 ]
Kim, Y. H. [1 ]
McEvoy, A. [1 ]
Evans, S. [1 ]
Sedillo, T. [1 ]
Batha, S. [1 ]
Schmitt, M. [1 ]
Wilson, D. C. [1 ]
Langenbrunner, J. R. [1 ]
Malone, R. [2 ]
Kaufman, M. I. [2 ]
Cox, B. C. [2 ]
Frogget, B. [2 ]
Miller, E. K. [3 ]
Ali, Z. A. [4 ]
Tunnell, T. W. [2 ]
Stoeffl, W. [5 ]
Horsfield, C. J. [6 ]
Rubery, M. [6 ]
机构
[1] Los Alamos Natl Lab, POB 1663,M-S E526, Los Alamos, NM 87545 USA
[2] Natl Secur Technol, Los Alamos, NM 87544 USA
[3] Natl Secur Technol, Special Technol Lab, Santa Barbara, CA 93111 USA
[4] Natl Secur Technol, Livermore, CA 94550 USA
[5] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[6] Atom Weap Estab, Reading RG7 4PR, Berks, England
关键词
D O I
10.1088/1742-6596/244/3/032047
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Reaction history measurements, such as nuclear bang time and burn width, are fundamental components of diagnosing ICF implosions and will be employed to help steer the National Ignition Facility (NIF) towards ignition. Fusion gammas provide a direct measure of nuclear interaction rate (unlike x-rays) without being compromised by Doppler spreading (unlike neutrons). Gas Cherenkov Detectors that convert fusion gamma rays to UV/visible Cherenkov photons for collection by fast optical recording systems have established their usefulness in illuminating ICF physics in several experimental campaigns at OMEGA. In particular, bang time precision better than 25 ps has been demonstrated, well below the 50 ps accuracy requirement defined by the NIF. NIF Gamma Reaction History (GRH) diagnostics are being developed based on optimization of sensitivity, bandwidth, dynamic range, cost, and NIF-specific logistics, requirements and extreme radiation environment. Implementation will occur in two phases. The first phase consists of four channels mounted to the outside of the target chamber at similar to 6 m from target chamber center (GRH-6m) coupled to ultra-fast photo-multiplier tubes (PMT). This system is intended to operate in the 10(13)-10(17) neutron yield range expected during the early THD campaign. It will have high enough bandwidth to provide accurate bang times and burn widths for the expected THD reaction histories (>80 ps fwhm). Successful operation of the first GRH-6m channel has been demonstrated at OMEGA, allowing a verification of instrument sensitivity, timing and EMI/background suppression. The second phase will consist of several channels located just inside the target bay shield wall at 15 m from target chamber center (GRH-15m) with optical paths leading through the cement shield wall to well-shielded streak cameras and PMTs. This system is intended to operate in the 10(16)-10(20) yield range expected during the DT ignition campaign, providing higher temporal resolution for the expected burn widths of 10-20 ps associated with ignition. Multiple channels at each phase will allow for increased redundancy, reliability, accuracy and flexibility. In addition, inherent energy thresholding capability combined with this multiplicity will allow exploration of interesting gamma-ray physics well beyond the ignition campaign.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Pulsar gamma-ray emission in the radiation reaction regime
    Petri, J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 484 (04) : 5669 - 5691
  • [32] Design of the radiation shield and collimator for neutron and gamma-ray diagnostics at EAST
    Chen, Weikun
    Hu, Liqun
    Zhong, Guoqiang
    Hong, Bing
    Zhou, Ruijie
    Li, Kai
    Huang, Liangsheng
    Cao, Hongrui
    FUSION ENGINEERING AND DESIGN, 2021, 172
  • [33] Control and data acquisition software upgrade for JET gamma-ray diagnostics
    Santos, B.
    Fernandes, A.
    Pereira, R. C.
    Neto, A.
    Bielecki, J.
    Craciunescu, T.
    Figueiredo, J.
    Kiptily, V.
    Murari, A.
    Nocente, M.
    Rigamonti, D.
    Sousa, J.
    Tardocchi, M.
    Giacomelli, L.
    Zychor, I.
    Broslawski, A.
    Gosk, M.
    Korolczuk, S.
    Urban, A.
    Boltruczyk, G.
    Correia, C. M. B. A.
    Goncalves, B.
    Abduallev, S.
    Abhangi, M.
    Abreu, P.
    Afzal, M.
    Aggarwal, K. M.
    Ahlgren, T.
    Ahn, J. H.
    Aho-Mantila, L.
    Aiba, N.
    Airila, M.
    Albanese, R.
    Aldred, V.
    Alegre, D.
    Alessi, E.
    Aleynikov, P.
    Alfier, A.
    Alkseev, A.
    Allinson, M.
    Alper, B.
    Alves, E.
    Ambrosino, G.
    Ambrosino, R.
    Amicucci, L.
    Amosov, V.
    Sunden, E. Andersson
    Angelone, M.
    Anghel, M.
    Angioni, C.
    FUSION ENGINEERING AND DESIGN, 2018, 128 : 117 - 121
  • [34] Gamma-ray luminosity function of gamma-ray bright AGNs
    Bhattacharya, Debbijoy
    Sreekumar, P.
    Mukherjee, R.
    RESEARCH IN ASTRONOMY AND ASTROPHYSICS, 2009, 9 (01) : 85 - 94
  • [35] Gamma-ray observations with the Transient Gamma-Ray Spectrometer (TGRS)
    Seifert, H
    Teegarden, BJ
    Cline, TL
    Gehrels, N
    Hurley, KH
    Madden, N
    Owens, A
    Palmer, DM
    Pehl, R
    Ramaty, R
    ASTRONOMY & ASTROPHYSICS SUPPLEMENT SERIES, 1996, 120 (04): : C653 - C656
  • [36] Magnetars, soft gamma-ray repeaters and gamma-ray bursts
    Harding, AK
    SUPERNOVAE AND GAMMA-RAY BURSTS: THE GREATEST EXPLOSIONS SINCE THE BIG BANG, 2001, 13 : 121 - 130
  • [37] GAMMA-RAY LINE INVESTIGATIONS WITH THE DURHAM GAMMA-RAY SPECTROMETER
    AYRE, CA
    BHAT, PN
    OWENS, A
    SUMMERS, WM
    THOMPSON, MG
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1981, 301 (1462): : 687 - 691
  • [38] Effect of gamma-ray beaming on the fluxes of gamma-ray pulsars
    Jiang, ZJ
    Zhang, L
    CHINESE PHYSICS LETTERS, 2005, 22 (05) : 1289 - 1292
  • [39] SIMULTANEOUS OPTICAL GAMMA-RAY OBSERVATIONS OF GAMMA-RAY BURSTS
    GREINER, J
    ASTRONOMY FROM WIDE-FIELD IMAGING, 1994, (161): : 57 - 59
  • [40] Gamma-ray luminosity function of gamma-ray bright AGNs
    Debbijoy Bhattacharya
    P.Sreekumar
    R.Mukherjee
    Research in Astronomy and Astrophysics, 2009, 9 (01) : 85 - 94