Time discontinuous Galerkin methods with energy decaying correction for non-linear elastodynamics

被引:18
|
作者
de Miranda, Stefano [1 ]
Mancuso, Massimo [2 ]
Ubertini, Francesco [1 ]
机构
[1] Univ Bologna, DISTART, I-40136 Bologna, Italy
[2] Univ Modena & Reggio Emilia, DIMC, I-41100 Modena, Italy
关键词
discontinuous Galerkin method; non-linear elastodynamics; time integration schemes; energy decaying algorithms; FINITE-ELEMENT-METHOD; COMPREHENSIVE UNIFIED SET; SINGLE-STEP ALGORITHMS; STRUCTURAL DYNAMICS; CONTROLLABLE DISSIPATION; FORMULATION; INTEGRATION; SYSTEMS;
D O I
10.1002/nme.2826
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper a new time discontinuous Galerkin (TDG) formulation for non-linear elastodynamics is presented. The new formulation embeds an energy correction which ensures truly energy decaying, thus allowing to achieve unconditional stability that, as shown in the paper, is not guaranteed by the classical TDG formulation. The resulting method is simple and easily implementable into existing finite element codes. Moreover, it inherits the desirable higher-order accuracy and high-frequency dissipation properties of the classical formulation. Numerical results illustrate the very good performance of the proposed formulation. Copyright (C) 2010 John Wiley & Sons, Ltd.
引用
收藏
页码:323 / 346
页数:24
相关论文
共 50 条
  • [21] Non-linear Petrov-Galerkin methods for reduced order hyperbolic equations and discontinuous finite element methods
    Fang, F.
    Pain, C. C.
    Navon, I. M.
    Elsheikh, A. H.
    Du, J.
    Xiao, D.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 234 : 540 - 559
  • [22] Time integration of the non-linear Galerkin method
    Garcia-Archilla, Bosco
    de Frutos, Javier
    IMA Journal of Numerical Analysis, 1995, 15 (02): : 221 - 224
  • [23] Energy decaying scheme for non-linear beam models
    Bauchau, OA
    Theron, NJ
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 134 (1-2) : 37 - 56
  • [24] A discontinuous Galerkin formulation of non-linear Kirchhoff-Love shells
    Noels, L.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2009, 78 (03) : 296 - 323
  • [25] High order discontinuous Galerkin methods on simplicial elements for the elastodynamics equation
    Paola F. Antonietti
    Carlo Marcati
    Ilario Mazzieri
    Alfio Quarteroni
    Numerical Algorithms, 2016, 71 : 181 - 206
  • [26] High order discontinuous Galerkin methods on simplicial elements for the elastodynamics equation
    Antonietti, Paola F.
    Marcati, Carlo
    Mazzieri, Ilario
    Quarteroni, Alfio
    NUMERICAL ALGORITHMS, 2016, 71 (01) : 181 - 206
  • [27] Multi-field spacetime discontinuous Galerkin methods for linearized elastodynamics
    Miller, S. T.
    Kraczek, B.
    Haber, R. B.
    Johnson, D. D.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2009, 199 (1-4) : 34 - 47
  • [28] Parametric resonance in non-linear elastodynamics
    Pucci, Edvige
    Saccomandi, Giuseppe
    INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2009, 44 (05) : 560 - 569
  • [29] AMR applied to non-linear Elastodynamics
    Falle, SAEG
    ADAPTIVE MESH REFINEMENT - THEORY AND APPLICATIONS, 2005, 41 : 235 - 253
  • [30] Optimal Energy Conserving Local Discontinuous Galerkin Methods for Elastodynamics: Semi and Fully Discrete Error Analysis
    Ruchi Guo
    Yulong Xing
    Journal of Scientific Computing, 2021, 87