Parametric resonance in non-linear elastodynamics

被引:4
|
作者
Pucci, Edvige [1 ]
Saccomandi, Giuseppe [1 ]
机构
[1] Univ Perugia, Dipartimento Ingn Ind, I-06125 Perugia, Italy
关键词
Non-linear elastodynamics; Parametric resonance; Shearing motions; Mooney-Rivlin materials; Mathieu equation; FINITE-AMPLITUDE; ELASTIC-WAVES;
D O I
10.1016/j.ijnonlinmec.2008.08.001
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We show that finite amplitude shearing motions superimposed on an unsteady simple extension are admissible in any incompressible isotropic elastic material. We show that the determining equations for these shearing motions admit a general reduction to a system of ordinary differential equations (ODEs) in the remarkable case of generalized circularly polarized transverse waves. When these waves are standing and the underlying unsteady simple extension is composed of a harmonic perturbation of a static stretch it is possible to reduce the determining ODEs to linear or non-linear Mathieu equations. We use this property for a detailed study of the phenomenon of parametric resonance in non-linear elastodynamics. (C) 2008 Elsevier Ltd All rights reserved..
引用
收藏
页码:560 / 569
页数:10
相关论文
共 50 条
  • [1] AMR applied to non-linear Elastodynamics
    Falle, SAEG
    [J]. ADAPTIVE MESH REFINEMENT - THEORY AND APPLICATIONS, 2005, 41 : 235 - 253
  • [2] A Hamiltonian particle method for non-linear elastodynamics
    Suzuki, Yukihito
    Koshizuka, Seiichi
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 74 (08) : 1344 - 1373
  • [3] PARAMETRIC AMPLIFICATION NEAR RESONANCE IN NON-LINEAR DISPERSIVE MEDIA
    BUTCHER, PN
    LOUDON, R
    MCLEAN, TP
    [J]. PROCEEDINGS OF THE PHYSICAL SOCIETY OF LONDON, 1965, 85 (545P): : 565 - &
  • [4] Parametric resonance in non-linear viscoelasticity: solids of differential type
    Pucci, Edvige
    Saccomandi, Giuseppe
    [J]. IMA JOURNAL OF APPLIED MATHEMATICS, 2010, 75 (04) : 492 - 505
  • [5] Linearity of waves in some systems of non-linear elastodynamics
    Lei, HC
    Hung, MJ
    [J]. INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1997, 32 (02) : 353 - 360
  • [6] Space-Time Isogeometric Analysis for linear and non-linear elastodynamics
    Saade, C.
    Lejeunes, S.
    Eyheramendy, D.
    Saad, R.
    [J]. COMPUTERS & STRUCTURES, 2021, 254
  • [7] Non-linear cancellation of the parametric resonance in elastic beams: Theory and experiment
    Lacarbonara, Walter
    Yabuno, Hiroshi
    Hayashi, Keiichi
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2007, 44 (7-8) : 2209 - 2224
  • [8] NONEXISTENCE OF GLOBAL-SOLUTIONS IN NON-LINEAR CAUCHY ELASTODYNAMICS
    KNOPS, RJ
    PAYNE, LE
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1979, 70 (02) : 125 - 133
  • [9] NON-LINEAR TIME HETERONYMOUS DAMPING IN NON-LINEAR PARAMETRIC PLANETARY SYSTEMS
    Hortel, M.
    Skuderova, A.
    [J]. ENGINEERING MECHANICS 2011, 2011, : 203 - 206
  • [10] A NON-LINEAR NUMERICAL METHOD FOR THE SIMULATION OF PARAMETRIC ROLL RESONANCE IN REGULAR WAVES
    Ahmed, T. M.
    Ballard, E. J.
    Hudson, D. A.
    Temarel, P.
    [J]. PROCEEDINGS OF THE 27TH INTERNATIONAL CONFERENCE ON OFFSHORE MECHANICS AND ARCHTIC ENGINEERING - 2008, VOL 4, 2008, : 245 - 254